hdu 1757(矩阵)

本文介绍了一种使用矩阵快速幂解决线性递推数列问题的方法,通过构造特定矩阵来简化复杂递推公式的计算过程。适用于解决形如 f(x)=a0*f(x-1)+a1*f(x-2)+...+a9*f(x-10) 的递推问题。
摘要由CSDN通过智能技术生成

题目链接:hdu1757

思路:首先,矩阵乘法具有结合律,即矩阵A*B*C = A*(B*C)

本题 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10)

构造的矩阵如下:

                                          A                      B

| f(10) |       | a0  a1  a2  ...  a8  a9 |       | f(9) |

|  f(9)  |       |  1     0    0  ...    0    0 |       | f(8) |

|  f(8)  |       |  0     1    0  ...    0    0 |       | f(7) |

|..........|  =   | ...   ...  ...    ...   ...  ...  |   *  |  ....  |

|  f(2)  |       |  0     0    0  ...    0    0 |      | f(1) |

|  f(1)  |       |  0     0    0  ...    1    0 |      | f(0) |


k = 10 时,f(10) = A*B

k = 11时,f(11) = A*A*B

k = 12时,f(12) = A*A*A*B

……

由此可以找到规律:k = x 时,f(x) = A*A*A*………A*A*B

接着用矩阵乘法快速幂的方法求解

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdlib>
using namespace std;
int k,mod;
struct node
{
    int map[10][10];
}unit,s;
node Mul(node a,node b)
{
    node c;
    int i,j,k;
    for(i = 0; i < 10; i ++)
    for(j = 0; j < 10; j ++)
    {
        c.map[i][j] = 0;
        for(k = 0;k < 10; k ++)
        c.map[i][j] += (a.map[i][k] * b.map[k][j])%mod;
        c.map[i][j] %= mod;
    }
    return c;
}
void Matrix()
{
    while(k)
    {
        if(k&1) unit = Mul(unit,s);
        k >>= 1;
        s = Mul(s,s);
    }
    int ans = 0;
    for(int j = 0; j < 10; j ++)
    ans += unit.map[0][j]*(9-j), ans %= mod;
    printf("%d\n",ans);
}
int main()
{
    int i,j;
    while(~scanf("%d%d",&k,&mod))
    {
        memset(unit.map,0,sizeof(unit.map));
        memset(s.map,0,sizeof(s.map));
        for(i = 0; i < 10; i ++)
        unit.map[i][i] = 1;
        for(i = 1; i < 10; i ++)
        s.map[i][i-1] = 1;
        for(j = 0; j < 10; j ++)
        scanf("%d",&s.map[0][j]);
        if(k < 10)
        {
            printf("%d\n",k%mod);
            continue;
        }
        k -= 9;
        Matrix();
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值