clamp函数用于约束返回值到A和B之间,若value小于min,则返回min;若value大于max,则返回max,起到上下截断的作用。
以下内容转载自:https://blog.csdn.net/u013230189/article/details/82627375,本文只做个人记录学习使用,版权归原作者所有。
torch.clamp(input,min,max,out=None)->Tensor
将输入input张量每个元组夹紧到区间[min,max]并返回结果得到一个新张量。如果输入是FloatTensor or DoubleTensor类型,则参数min max必须为实数,否则须为整数。
参数:
- input(Tensor)输入张量
- min(Number)限制范围下限
- max(Number)限制范围上限
- out(Tensor,optimal)输出张量
示例代码:
a=torch.randint(low=0,high=10,size=(10,1))
print(a)
a=torch.clamp(a,3,9)
print(a)
输出如下:
tensor([[9.],
[3.],
[0.],
[4.],
[4.],
[2.],
[4.],
[1.],
[2.],
[9.]])
tensor([[9.],
[3.],
[3.],
[4.],
[4.],
[3.],
[4.],
[3.],
[3.],
[9.]])