pytho中的clamp函数

clamp函数用于约束返回值到A和B之间,若value小于min,则返回min;若value大于max,则返回max,起到上下截断的作用。

以下内容转载自:https://blog.csdn.net/u013230189/article/details/82627375,本文只做个人记录学习使用,版权归原作者所有。

torch.clamp(input,min,max,out=None)->Tensor

将输入input张量每个元组夹紧到区间[min,max]并返回结果得到一个新张量。如果输入是FloatTensor or DoubleTensor类型,则参数min max必须为实数,否则须为整数。

参数:

  • input(Tensor)输入张量
  • min(Number)限制范围下限
  • max(Number)限制范围上限
  • out(Tensor,optimal)输出张量

示例代码:

a=torch.randint(low=0,high=10,size=(10,1))
print(a)
a=torch.clamp(a,3,9)
print(a)

输出如下:

tensor([[9.],
        [3.],
        [0.],
        [4.],
        [4.],
        [2.],
        [4.],
        [1.],
        [2.],
        [9.]])
tensor([[9.],
        [3.],
        [3.],
        [4.],
        [4.],
        [3.],
        [4.],
        [3.],
        [3.],
        [9.]])

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值