数据归一化与z-score标准化

本文详细解析了两种常见的数据预处理方法:min-max标准化(极差法)和z-score标准化(标准化分数)。前者通过线性变换将数据映射到[0-1]区间,后者则确保数据符合标准正态分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现实应用中,归一化和标准化都快被叫烂了,很多时候我们都认为二者有相同的意思。粗略上是可以这样认为的,功能是一样的,目的都是消除量纲的影响,以解决指标之间的可比性问题。细细品味,背后还是有些意思的。从几种方法出发。

一.min-max标准化

min-max标准化,也称为极差法,这是对原始数据的一种线性变换,使原始数据映射到[0-1]之间。

所以说,这种标准化我们称之为归一化的时候,本质上是指将原始数据的 最大值映射成1,是 最大值归一化。

二.z-score标准化

z-score标准化,也称为标准化分数,这种方法根据原始数据的均值和标准差进行标准化,经过处理后的数据符合标准正态分布,即均值为0,标准差为1(根据下面的转化函数很容易证明),转化函数为:
所以说,这种标准化我们称之为归一化的时候,本质上是指将原始数据的标准差映射成1,是标准差归一化。标准差分数可以回答这样一个问题:“给定数据距离其均值多少个标准差”的问题,在均值之上的数据会得到一个正的标准化分数,反之会得到一个负的标准化分数

reference to:
http://www.09dsj.com/index.php/archives/1568
http://blog.csdn.net/dkcgx/article/details/46634471
http://www.cnblogs.com/chaosimple/archive/2013/07/31/3227271.html
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值