PCA主成分分析——重构人脸图像(MATLAB)

PCA主成分分析是将多维数据按照主成分降维的一种方法。PCA的主要流程是:

(1)获取数据矩阵。这些数据的维度要保持相同(如果是图片的话,那图片的尺寸保持相同)。

(2)对数据进行中心化处理。计算出每个维度的均值,得到一个均值向量,用数据矩阵减去此向量,这样就完成了中心化处理。

(3)计算协方差。用第二步求得的中心化处理后的数据矩阵做协方差。

(4)求协方差的特征值和特征向量。并且按照特征值从大到小排序,对应的特征向量也相同排序。

(5)用前几个特征向量组成变换矩阵W,然后降维操作就是用W乘以数据矩阵,得到了低维度的数据。

重构就是用变换后的数据乘以W的转置,得到之前的原始数据。

实验结果:

特征值从大到小排序:

人脸重构:

代码下载: PCA主成分分析重构人脸图像-机器学习文档类资源-CSDN下载利用PCA主成分分析,对人脸图像进行降维压缩,之后重构人脸图像。更多下载资源、学习资料请访问CSDN下载频道.https://download.csdn.net/download/k1ttyLove/85610913

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嘟噜猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值