矩阵旋转规律

1.矩阵的旋转:
矩阵的逆时针旋转基本有四种情况:
0度
90度
180度
270度,相当于顺向的90度
90度旋转:
列号变为行号
(n - 行号 - 1)变成列号
规律: a[i][j] = b[j][n - i - 1]
180度旋转:
(n - 行号 -1)变为行号
(m- 列号 + 1)变为列号
规律:a[i][j] = b[n - i - 1][m - j - 1]
270度旋转(相当于逆时针旋转90度):
行号变为列号
(m - 列号 + 1)变为行号
规律:a[i][j] = b[m - j -1][i]
注意:其中n,m分别为原来矩阵的行数和列数。加粗样式

### Java 实现矩阵旋转 在不使用额外内存的情况下,可以通过逐层交换的方式实现矩阵的原地旋转。具体来说,在每一圈内完成四个位置之间的元素互换。 对于一个N×N的矩阵,如果要将其顺时针方向旋转90度,则可以从外向内地一圈接一圈处理,每圈内的元素按照一定规律移动到新的位置上[^1]: ```java public class Solution { public void rotate(int[][] matrix) { int n = matrix.length; for (int layer = 0; layer < n / 2; ++layer) { int first = layer; int last = n - 1 - layer; for(int i = first; i < last; ++i) { int offset = i - first; // Save top. int top = matrix[first][i]; // left -> top matrix[first][i] = matrix[last-offset][first]; // bottom -> left matrix[last-offset][first] = matrix[last][last - offset]; // right -> bottom matrix[last][last - offset] = matrix[i][last]; // top -> right matrix[i][last] = top; } } } } ``` 此代码片段展示了如何通过四次赋值语句来完成一次完整的循环替换过程,从而达到整个矩阵逆时针旋转的效果[^3]。注意这里采用的是顺时针旋转逻辑,因此实际操作中会涉及到不同的索引计算方式。 另外需要注意的是,当`n`为奇数时,最中心的那个元素不需要参与任何交换动作;而偶数情况下则不存在这种情况。 上述方法能够有效地解决给定问题,并满足题目要求——即只允许修改原始数组而不创建新数组作为辅助存储空间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值