
LangChain
文章平均质量分 95
嘉羽很烦
慢慢慢慢,凡事平常心
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
20250914-03: Langchain概念:提示模板+少样本提示
方面单轮对话示例多轮对话示例形式简单的Q-A 对(一问一答)完整的对话历史(多问多答)内容只展示正确的最终答案展示错误 -> 反馈 -> 纠正的全过程好比闪卡/备忘录:只记答案教学视频/案例研究:分析错题,讲解思路教学目标教会模型“是什么教会模型“为什么”以及“如何改进复杂度低高适用任务事实问答、翻译、简单总结风格写作、复杂推理、安全拒绝、交互式任务如果你想让模型学会回答简单明了的问题,就用单轮示例。像喂给它一对对的(问题,答案)。如果你想教模型完成一件复杂的、容易出错的事情,就给它讲个。原创 2025-09-14 21:34:56 · 1016 阅读 · 0 评论 -
系统性掌握 LangChain 的核心概念体系
本文提出了一套为期4周的系统性学习计划,旨在帮助开发者掌握LangChain框架的核心概念体系。学习路径分为6个模块:核心运行机制、模型与输入输出、记忆与上下文管理、知识增强(RAG)、决策与行动(Agent)以及工程化与质量保障。每个模块都包含明确的学习目标、核心概念和渐进式实践任务,通过从基础组件到完整系统的递进训练,最终实现构建具备记忆、检索、工具调用和评估能力的AI应用。该计划强调刻意练习和成果导向,每周聚焦1-2个模块,最终产出包括带记忆的聊天机器人、PDF问答系统和智能代理等实践项目。原创 2025-09-14 15:31:32 · 671 阅读 · 0 评论 -
20250914-02: Langchain概念:异步编程(Async)
本文将介绍LangChain中的异步编程概念。异步编程通过非阻塞方式处理I/O密集型任务(如API调用、数据库访问),可显著提升效率。LangChain为同步方法提供异步版本(前缀为"a"),如ainvoke对应invoke。当异步实现不可用时,LangChain会委托给同步方法,虽带来轻微性能开销但保证兼容性。文章还通过"厨房"比喻形象解释同步与异步的区别,以及性能开销的来源,包括委托同步方法和处理小任务时的额外成本。原创 2025-09-14 15:18:48 · 561 阅读 · 0 评论 -
20250914-01: Langchain概念:流式传输(Streaming)
从大型语言模型(LLM)生成完整响应通常会产生几秒钟的延迟,在涉及多次模型调用的复杂应用程序中,这种延迟会更加明显。这种延迟会更加明显。幸运的是,大型语言模型以迭代方式生成响应,允许在生成过程中显示中间结果。通过流式传输这些中间输出,LangChain 可以在基于大型语言模型的应用程序中实现更流畅的用户体验,并在其核心设计中提供了对流式传输的内置支持。在本指南中,我们将讨论大型语言模型应用程序中的流式传输,并探讨 LangChain 的流式传输 API 如何促进应用程序中各种组件的实时输出。原创 2025-09-14 14:25:41 · 706 阅读 · 0 评论 -
20250913-04: Langchain概念:LangSmith 追踪(Tracing)
本文介绍了LangChain中的追踪(Tracing)功能及其在LangSmith平台上的实现。追踪是记录应用程序从输入到输出执行步骤的过程,对调试和诊断复杂问题至关重要。文章详细说明了如何配置LangSmith追踪功能,包括安装依赖项、设置API密钥、环境变量,以及通过代码示例展示如何追踪OpenAI调用和整个应用程序的执行流程。此外,还介绍了LangSmith平台的高级功能,如监控、自动化、收集反馈以及追踪RAG应用等,帮助开发者更好地观测和优化LLM应用程序的性能。原创 2025-09-14 01:04:13 · 772 阅读 · 0 评论 -
20250913-03: Langchain概念:回调
本文介绍了LangChain框架中的回调系统,该系统允许开发者在LLM应用程序执行的不同阶段注入自定义逻辑,用于日志记录、监控等任务。回调处理程序分为同步和异步两种类型,通过事件触发对应方法(如on_llm_start)。回调可通过请求时或构造函数两种方式传递,但需注意构造函数回调不会被子对象继承。此外,在Python<=3.10中异步运行时需手动传播回调到子对象,否则可能导致事件未被捕获。原创 2025-09-14 00:11:21 · 344 阅读 · 0 评论 -
20250913-02: Langchain概念:表达式语言(LCEL)
咖啡师(在这里相当于 LangChain)会根据你的要求,自行决定最佳的步骤、水温、水流等来优化制作过程。是一个组合原语,它允许您并发运行多个 runnable,并为每个 runnable 提供相同的输入。请记住,runnable 是并行执行的,因此虽然结果与上面所示的字典推导式相同,但执行时间要快得多。许多这些传统链隐藏了诸如提示之类的关键细节,并且随着各种可行模型的出现,自定义变得越来越重要。的用法非常常见,因此我们创建了它们的简写语法。——它允许 LangChain 以优化的方式处理链的运行时执行。原创 2025-09-13 23:22:04 · 1543 阅读 · 0 评论 -
20250913-01: Langchain概念:Runnable可运行接口
Runnable 方式定义了一个标准接口,允许 Runnable 组件调用invoked:将单个输入转换为输出。批量处理Batched:将多个输入高效地转换为输出。流式传输Streamed:输出在其生成时进行流式传输。检查 Inspected:可以访问有关 Runnable 输入、输出和配置的示意信息。组合 Composed:可以使用LangChain 表达式语言 (LCEL)将多个 Runnable 组合在一起以创建复杂的管道。请查看LCEL 速查表。原创 2025-09-13 20:51:20 · 978 阅读 · 0 评论 -
20250911-01: 概念:基础认知--消息
用于设定AI行为或对话上下文的系统指令消息,LangChain会根据提供商能力自动适配传递方式。🔹 HumanMessage:代表用户输入的消息,支持文本或自动转换字符串,是对话的触发起点。模型生成的响应消息,可包含文本、tool_calls或多媒体内容,是对话的核心输出。携带工具执行结果的消息,必须包含tool_call_id以关联原始调用,是工具调用闭环的关键。流式响应中的消息片段,支持运算符聚合为完整AIMessage,用于实时输出场景。消息是对话的。原创 2025-09-11 23:47:36 · 636 阅读 · 1 评论 -
20250909-01: 概念:基础认知--聊天模型
LLM:大型语言模型(LLM)是先进的机器学习模型,擅长文本生成、翻译、摘要、问答等广泛的语言相关任务,无需针对每个场景进行任务特定的微调。现代 LLM :通常通过聊天模型接口访问,该接口接受消息列表作为输入,并返回一条消息作为输出。工具调用:聊天模型自带工具调用,可直接连外部服务、API 和数据库,顺便把非结构化数据秒变结构化。结构化输出:一种使聊天模型以结构化格式响应的技术。(例如与给定模式匹配的 JSON)多模态:处理文本以外数据(例如图像、音频和视频)的能力。原创 2025-09-10 01:08:53 · 712 阅读 · 0 评论 -
20250908-02:运行第一个 LLM 调用程序
本文介绍了如何使用LangChain框架快速构建一个简单的LLM调用程序。主要内容包括:设置LangChain开发环境;使用提示模板和智谱GLM模型构建基础应用;对比.invoke()和.stream()的调用方式差异;通过LangSmith进行调试追踪。教程提供了代码模板和GitCode源码链接,帮助开发者在1小时内完成首个LLM应用,实现文本翻译功能并提交到代码仓库。关键学习点包括语言模型调用、提示模板使用和输出解析器配置。原创 2025-09-08 23:51:29 · 909 阅读 · 0 评论 -
20250908-02:搭建 Python 开发环境
本文介绍了搭建Python开发环境的核心步骤,重点围绕Conda和UV工具的使用展开。主要内容包括:1)Conda的功能介绍与环境管理(创建/切换虚拟环境、包安装);2)UV工具的高效特性(比pip快10-100倍)及其核心功能(项目管理、依赖同步);3)国内镜像源配置(清华源);4)关键操作指令清单(环境创建、包管理、项目初始化等)。文章提供了完整的开发环境搭建方案,强调通过虚拟环境实现项目隔离,并附有工具速查表链接,适合需要快速配置Python开发环境的读者参考。原创 2025-09-08 20:19:40 · 860 阅读 · 0 评论 -
20250907-03:LangChain的六大核心模块概览
✅ LangChain 第一周成长计划:基础认知与环境搭建🎯 本周核心目标(Objective)建立对 LangChain 的系统性认知,完成本地开发环境搭建,并成功运行第一个 LLM 调用程序。具体内容:所需时间:2 小时预期成果:难度控制:i+1 —— 不要求深入代码,只需建立模块“是什么、干什么”的认知地图。资源准备:关键内容(即六大核心模块):LangChain 为以下主要组件提供标准、可扩展的接口和外部集成格式化和管理语言模型输入输出。 “执行者” :负责与底层大语言模型(LLM原创 2025-09-07 23:54:27 · 609 阅读 · 0 评论 -
20250907-02:LangChain 架构和LangChain 生态系统包是什么
核心层:定规矩,保兼容,让所有积木能拼在一起。集成层:接外设,通天下,让 AI 能用上各种工具和数据。应用层:搭积木,建应用,用预制件快速组装智能功能。编排部署层:上生产,可运维,让原型变成稳定可靠的服务。原创 2025-09-07 20:34:31 · 1140 阅读 · 0 评论 -
20250907-0101:LangChain 核心价值补充
LangChain 是一个专为“连接大模型与现实世界、编排复杂任务流程”而设计的开发框架,它让开发者能高效、可靠、可扩展地构建生产级 LLM 应用。原创 2025-09-07 19:09:38 · 588 阅读 · 0 评论 -
20250907-01:理解 LangChain 是什么 & 为什么诞生
LangChain 并不是一个“银弹”,但它提供了一套标准化、模块化、生产就绪的工具箱,将 AI 应用开发中那些重复、繁琐、易错的“脏活累活”抽象出来,让开发者能够专注于业务逻辑和创新,而不是底层的集成细节。。原创 2025-09-07 18:15:41 · 986 阅读 · 0 评论 -
20250906-01:开始创建LangChain的第一个项目
配置JetBrain环境 使用 conda创建的。通过JetBrain Git工具下载【简单】通过Git终端下载【简单】许安装git工具。配置JetBrain Idea uv解释器。工具作为管理和python解析器。配置project.toml文件。执行‘hello world'配置本地JetBrain环境。使用conda 新建一个。参考之前项目配置【已验证】使用jetbrain打开。作为python基础。原创 2025-09-06 22:48:09 · 1043 阅读 · 0 评论 -
【LangChain:01】✅ 3小时掌握 LangChain 表达式语言 (LCEL) 成长计划 —— 刻意练习版
这篇3小时掌握LangChain表达式语言(LCEL)的刻意练习计划,通过三个阶段系统化学习路径:0.5小时理论学习(理解LCEL设计哲学与核心组件)、1.5小时基础练习(构建顺序链/并行分支/状态管理)和1小时综合应用(RAG链构建与调试部署)。计划强调即时反馈,每项任务都设定了可验证的成果标准,并配套官方文档、视频教程和在线练习平台等资源。完成训练后,学习者将掌握LCEL的核心优势、链式构建能力及生产环境部署技巧,实现从理论到实践的快速跨越。(149字)原创 2025-09-06 01:26:47 · 475 阅读 · 0 评论 -
《LangChain从入门到精通》系统学习教材大纲
LangChain的诞生背景:为什么需要LangChain?核心定位:连接大模型与外部世界的“操作系统”典型应用场景:聊天机器人、文档问答、智能代理、自动化流程等LangChain是通往AI应用开发的黄金钥匙。它不仅是一个工具库,更是一种构建智能系统的思维方式。只要你坚持系统学习、动手实践,完全可以在3个月内从小白成长为专家。我会一直在这里支持你。接下来,你可以告诉我:“老师,我现在想从第一课开始,请帮我制定第1周的详细学习计划。期待你的成长!—— 你的LangChain导师 🌟。原创 2025-09-06 00:04:20 · 673 阅读 · 0 评论 -
Langchain指南-关键特性:使用聊天模型调用工具
为了使模型能够调用工具,我们需要传递描述工具功能及其参数的工具模式。支持工具调用功能的聊天模型实现了一个.bind_tools()方法,用于将工具模式传递给模型。工具模式可以作为 Python 函数(带有类型提示和文档字符串)、Pydantic 模型、TypedDict 类或 LangChain 工具对象传递。后续对模型的调用将传递这些工具模式以及提示。原创 2025-08-31 18:09:48 · 698 阅读 · 0 评论 -
Langchain指南-关键特性:如何流式传输可运行项
此界面提供了两种通用的流式内容方法:统一接口• 所有 都内置 (同步)与 (异步)两种流式方法。设计目标• 一旦某一块(chunk)结果就绪,立即推送给调用方,减少等待时间。可行条件• 整条链路中的每一步必须能“按块处理”:– 输入逐块进入 → 即时产生对应的输出块。• 若任何步骤只能一次性处理完整输入,则流式中断。复杂度梯度• 简单:逐 token 转发 LLM 输出。• 复杂:在完整 JSON 尚未生成前,逐步解析并流式返回部分 JSON 片段。入门建议• 从最核心的 LLM 开始体验原创 2025-08-31 16:36:17 · 788 阅读 · 0 评论