class torch.nn.Module
Containers(容器):
class torch.nn.Module
所有网络的基类。详见中文文档
方法:
register_parameter(name, param)
向module添加 parameter,参数的名字是name,默认值是param
parameter可以通过注册时候的name获取
forward( input)*
定义了每次执行的 计算步骤。 在所有的子类中都需要重写这个函数。
其他常用方法:
train()
eval()
add_module()
children() #subModules迭代器
modules() #所有Modules迭代器
cpu()
cuda() #gpu
double()
float()
half()
nn.parameter
class torch.nn.Parameter()
Variable的一种,常被用于模块参数(module parameter)。
Parameters 是 Variable 的子类。
Paramenters和Modules一起使用的时候会有一些特殊的属性,即:
当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参数列表中(即:会出现在 parameters() 迭代器中)。
将Varibale赋值给Module属性则不会有这样的影响。
这样做的原因是:我们有时候会需要缓存一些临时的状态(state), 比如:模型中RNN的最后一个隐状态。如果没有Parameter这个类的话,那么这些临时变量也会注册成为模型变量。
Variable 与 Parameter的另一个不同之处在于,Parameter不能被 volatile(即:无法设置volatile=True)而且默认requires_grad=True。Variable默认requires_grad=False。
参数说明:
data (Tensor) – parameter tensor.
requires_grad (bool, optional) – 默认为True,在BP的过程中会对其求微分。
uniform_(from=0, to=1) → Tensor
将tensor用从均匀分布中抽样得到的值填充
view(*args) → Tensor
返回一个有相同数据但大小不同的tensor。 返回的tensor必须有与原tensor相同的数据和相同数目的元素,但可以有不同的大小。一个tensor必须是连续的contiguous()才能被查看。
例:
x = torch.randn(4, 4)
x.size()
torch.Size([4, 4])y = x.view(16)
y.size()
torch.Size([16])z = x.view(-1, 8) # the size -1 is inferred from other dimensions
z.size()
torch.Size([2, 8])
zero_()
用0填充该tensor。
transpose(dim0, dim1) → Tensor
请查看torch.transpose()