nn.module nn.parameter

class torch.nn.Module

Containers(容器):
class torch.nn.Module
所有网络的基类。详见中文文档
方法:
register_parameter(name, param)
向module添加 parameter,参数的名字是name,默认值是param
parameter可以通过注册时候的name获取
forward( input)*
定义了每次执行的 计算步骤。 在所有的子类中都需要重写这个函数。
其他常用方法:
train()
eval()
add_module()
children() #subModules迭代器
modules() #所有Modules迭代器
cpu()
cuda() #gpu
double()
float()
half()

nn.parameter

class torch.nn.Parameter()
Variable的一种,常被用于模块参数(module parameter)。

Parameters 是 Variable 的子类
Paramenters和Modules一起使用的时候会有一些特殊的属性,即:
当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参数列表中(即:会出现在 parameters() 迭代器中)。
将Varibale赋值给Module属性则不会有这样的影响。
这样做的原因是:我们有时候会需要缓存一些临时的状态(state), 比如:模型中RNN的最后一个隐状态。如果没有Parameter这个类的话,那么这些临时变量也会注册成为模型变量。

Variable 与 Parameter的另一个不同之处在于,Parameter不能被 volatile(即:无法设置volatile=True)而且默认requires_grad=True。Variable默认requires_grad=False。

参数说明:

data (Tensor) – parameter tensor.

requires_grad (bool, optional) – 默认为True,在BP的过程中会对其求微分。

uniform_(from=0, to=1) → Tensor

将tensor用从均匀分布中抽样得到的值填充

view(*args) → Tensor

返回一个有相同数据但大小不同的tensor。 返回的tensor必须有与原tensor相同的数据和相同数目的元素,但可以有不同的大小。一个tensor必须是连续的contiguous()才能被查看。

例:

x = torch.randn(4, 4)
x.size()
torch.Size([4, 4])

y = x.view(16)
y.size()
torch.Size([16])

z = x.view(-1, 8) # the size -1 is inferred from other dimensions
z.size()
torch.Size([2, 8])

zero_()

用0填充该tensor。

transpose(dim0, dim1) → Tensor

请查看torch.transpose()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值