example文件夹:有四个任务的训练数据、测试数据和模板文件。
crf_learn.exe:CRF++的训练程序
crf_test.exe:CRF++的预测程序
libcrfpp.dll:训练程序和预测程序需要使用的静态链接库。
实际上,需要使用的就是crf_learn.exe,crf_test.exe和libcrfpp.dll,这三个文件。
一、简单使用
1.将crf_learn.exe;crf_test.exe;libcrfpp.dll三个文件复制到到,含有exec.sh;template;test.data;train.data的文件夹(chunking)里。
2.cmd cd进入该文件夹
crf_learn template train.data model 训练数据
crf_test -m model test.data >output.txt 测试数据
perl conlleval.pl < output.txt 评估效果(此处会报错误)需要下载perl(需要复制
conlleval.pl文件到文件夹里)
3.会产生一个新的文件:model
这个训练过程的时间、迭代次数等信息就会输出到控制台上,如果想要保存这些信息,我们可以将这些标准输出 流到文件,命令格式为:
crf_learn template_file train_file model_file >> train_info_file
eg:crf_learn template train.data model >> model_out.txt
4.有四个参数可以调整,我认为目前对我的试验有用的是:
-c float
这个参数设置CRF的hyper-parameter。c的数值越大,CRF拟合训练数据的程度越高。这个参数可以调整过拟合和不拟合之间的平衡度。这个参数可以通过 交叉验证? 等方法寻找较优的参数。(其实还不太懂?)
-f NUM
这个参数设置特征的cut-off threshold。CRF++使用训练数据中至少出现NUM次的特征。默认值为1。
二、训练过程(详细)
crf_learn <模板> <训练语料> <模板文件>。
其中模板和训练语料是需要事先准备好的,模板文件在训练完成后生成。
训练中一些参数的说明:(没试过)
ter:迭代次数
terr:标记错误率
serr:句字错误率
obj:当前对象的值。当这个值收敛到一个确定值的时候,训练完成
diff:与上一个对象值之间的相对差
三、测试过程(详细)
1.输入命令进行测试数据,测试程序的命令为:
crf_test -m model_file test_file
eg: crf_test -m model test.data
2.同样,与crf_learn类似,输出的结果放到了标准输出流上,而这个输出结果是最重要的预测结果信息(预测文件的内容+预测标注),同样可以使用重定向,将结果保存下来,命令为:
crf_test -m model_file test_files >> result_file
eg:crf_test -m model test.data >> output.txt
你会发现生成一个新的文件output.txt,就是我们的测试结果。
3.在这里的参数 有两个-v 和-n,都是用来显示一些信息的。
-v 可以用来预测标签概率值 -n用处不大
四、特征选取及模板的编写
特征选取的行是相对的,列数绝对的,
特征表示方法为:%x[行,列],行列的初始位置都为0。
U00:%x[-2,0]
U01:%x[-1,0]
U02:%x[0,0]
U03:%x[1,0]
U04:%x[2,0]
U05:%x[-2,1]
U06:%x[-1,1]
U07:%x[0,1]
U08:%x[1,1]
U09:%x[2,1]
U10:%x[-1,0]/%x[0,0]
U11:%x[0,0]/%x[1,0]
U12:%x[-2,1]/%x[-1,1]
U13:%x[-1,1]/%x[0,1]
U14:%x[0,1]/%x[1,1]
U15:%x[1,1]/%x[2,1]
U16:%x[-2,1]/%x[-1,1]/%x[0,1]
U17:%x[-1,1]/%x[0,1]/%x[1,1]
U18:%x[0,1]/%x[1,1]/%x[2,1]
说明:
i. 其中#开头的行不起作为,为注释;
ii. 行与行之间可以有空行;
iii. Unigram的特征前使用字母U,而Bigram的特征前使用字母B。后面的数字用于区分特征,当然这些数字不是一定要连续。
下载(注意需要先安装perl):
要求crf_test一步使用的测试文件中本身带有答案,这样解码后生成的结果会在答案的后一列。比如原来为:
使 En N
、 Sw N
交 Bni B-ORG
通 Mni I-ORG
部 Eni I-ORG
部 Bn N
那么解码后变成:
使 En N N
、 Sw N N
交 Bni B-ORG B-ORG
通 Mni I-ORG I-ORG
部 Eni I-ORG I-ORG
部 Bn N N
CoNLL 2000将把最后一列与倒数第二列进行对比,统计出最后各类的正确率,召回率、F值等。
评测命令为:perl conlleval.pl < <评测文件>
使用评测工具前要将评测文件中的所有制表位转换成空格,否则评测工具会出错