tensorflow下实现ResNet网络对数据集cifar-10的图像分类

本文介绍了如何利用ResNet网络解决深度学习中的退化问题,通过添加shortcut connection实现identity mapping。展示了ResNet在CIFAR-10数据集上的应用,使用ResNet A版(不带参数的shortcut connection)进行32x32图片的分类,网络结构包括3x3卷积层和全局平均池化。提供了模型结构代码,并提供了Inceptionv3和DenseNet的相关链接。
摘要由CSDN通过智能技术生成

Inceptionv3传送门:Inceptionv3

DenseNet传送门:DenseNet

SegNet传送门:semantic segmentation-segnet

ResNet论文地址:https://arxiv.org/pdf/1512.03385.pdf

先来简单讲讲ResNet的网络结构。ResNet的出现是为了解决深度网络中由于层数太多,导致的degradation problem(退化问题),作者在原论文中对比了较为“耿直”的深度卷积网络(例如以VGG为原型,不断加深层数)在不同层数的训练精度:

从图中可见,18层的卷积结构反而要比34层的准确率要高,这就是所谓的degradation problem。而ResNet提出了一种比较新颖的解决方法,即identity mapping:在常用的卷积结构中加入一个shortcut connection(捷径)。如下图所示:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值