点击上方蓝色字体,关注我们
作者简介作者:吴健 中国科学院大学 R语言、统计学爱好者,尤其擅长R语言和Arcgis在生态领域的应用分享
个人公众号:统计与编程语言
前文推送:
上一期我们已经对R语言绘制基本矩形框,文本和线条进行了介绍,本文将在上一期的基础上,通过自编函数快速绘制流程图。
第一步:自定义绘制基本矩形和文本的函数。利用该函数可以快速的根据字段的长度和宽度绘制相应的矩形框,该矩形框为流程图的基本图元。
tableBox <- function(labels, x=0.5, y=0.5) {
nlabel <- length(labels)#确定标签个数
taplevp <- viewport(x=x, y=y, width=max(stringWidth(labels))+ unit(4, "mm"),
height=unit(nlabel, "lines"))#根据标签的多少绘制矩形框
pushViewport(taplevp)
grid.roundrect()
if (nlabel > 1) {
for (i in 1:(nlabel-1)) {
fill <- c("white", "grey")[i%%2+1]
grid.clip(y=unit(i, "lines"), just="bottom")
grid.roundrect(gp=gpar(fill=fill))
}
}
grid.clip()#绘制灰色阴影
grid.text(labels, x=unit(2, "mm"), y=unit(nlabel:1-0.5, 'lines'),just='left')#添加文本
popViewport()
}
第二步:确定矩形框在绘图窗口的位置,并以该位置为连接线的起点和终点,绘制带箭头的连接线。
boxGrob <- function(labels, x=0.5, y=0.5) {
grob(labels=labels, x=x, y=y, cl="box")
}#存储矩形框的基本信息
drawDetails.box <- function(x, ...) {
tableBox(x$labels, x$x, x$y)
}#确定矩形框的基本位置
xDetalis.box <- function(x, theta) {
nlines <- length(x$labels)
height <- unit(nlines, 'lines')
width <- unit(4, "mm")+max(stringWidth(x$labels))
grobX(roundrectGrob(x=x$x, y=x$y, width=width, height=height), theta)
}#确定矩形框在X轴的位置(东西方向)
yDetalis.box <- function(x, theta) {
nlines <- length(x$labels)
height <- unit(nlines, 'lines')
width <- unit(4, "mm")+max(stringWidth(x$labels))
grobY(rectGrob(x=x$x, y=x$y, width=width, height=height), theta)
}#确定矩形框在Y轴的位置(南北方向)
第三步:以上述两个函数为基础绘制流程图
library(grid)
#确定矩形框的大小和矩形框里面的标签
box1 <- boxGrob(c("book_author_table", "ID", "book", "author"),x=0.25)
box2 <- boxGrob(c("book_table", "ISBN", "title", "pub"), x=0.6, y=0.75)
box3 <- boxGrob(c("author_table", "ID", "name", "gender"), x=0.6, y=0.25)
box4 <- boxGrob(c("publisher_table", "ID", "name","country"), x=0.85,y=0.75)
box5 <- boxGrob(c("gender_table", "ID", "gender"), x=0.85,y=0.25)
#绘制矩形框及标签
grid.draw(box1)
grid.draw(box2)
grid.draw(box3)
grid.draw(box4)
grid.draw(box5)
#绘制不同矩形框之间的连接线
grid.curve(xDetalis.box(box1, "east"),
yDetalis.box(box1, "south")+ unit(1.5, "lines") ,
xDetalis.box(box2, "west"),
yDetalis.box(box2, "north")- unit(1.5, "lines") ,
inflect=TRUE,
arrow=arrow(type="closed",angle=15,length=unit(2, "mm")),gp=gpar(fill="black"))
grid.curve(xDetalis.box(box1, "east"),
yDetalis.box(box1, "north") - unit(3.5, "lines"),
xDetalis.box(box3, "west"),
yDetalis.box(box3, "south") + unit(2.5, "lines"),
inflect=T, square=T,curvature=-1,
arrow=arrow(type="closed", angle=15, length=unit(2, "mm")), gp=gpar(fill="black"))
grid.curve(xDetalis.box(box2, "east"),
yDetalis.box(box2, "south") + unit(0.5, "lines"),
xDetalis.box(box4, "west"),
yDetalis.box(box4, "north") - unit(1.5, "lines"),
inflect=TRUE,
arrow=arrow(type="closed", angle=15, length=unit(2, "mm")), gp=gpar(fill="black"))
grid.curve(xDetalis.box(box3, "east"),
yDetalis.box(box3, "south") + unit(0.5, "lines"),
xDetalis.box(box5, "west"),
yDetalis.box(box5, "north")- unit(1.5, "lines"),
inflect=TRUE,
arrow=arrow(type="closed", angle=15, length=unit(2, "mm")), gp=gpar(fill="black"))
大家都在看
公众号后台回复关键字即可学习
回复 爬虫 爬虫三大案例实战
回复 Python 1小时破冰入门回复 数据挖掘 R语言入门及数据挖掘
回复 人工智能 三个月入门人工智能
回复 数据分析师 数据分析师成长之路
回复 机器学习 机器学习的商业应用
回复 数据科学 数据科学实战
回复 常用算法 常用数据挖掘算法