一、大数据的特征
大数据有以下五个特点:1.数据体量巨大;2.数据形式多样;3.高速性;4.价值密度低;5.商业价值高。
1.数据体量巨大
随着互联网行业的发展,许多日常运营中生成、累积的用户网络行为的数据。比如社交电商平台每天的产生订单,各个短视频、论坛、社区发布的帖子、评论及小视频,每天发送的电子邮件,以及上传的图片、视频与音乐等等,这些无数个体产生的数据规模很庞大,数据体量早已达到了PB级别以上。如此大规模的数据想要被处理,被分析,被统计,就需要有足够大的容量,所以大数据的一大特点就是体量巨大。
2.数据形式多样
广泛的数据来源,决定了大数据形式的多样性。任何形式的数据都可以产生作用,目前应用较广泛的就是推荐系统,如淘宝,网易云音乐、今日头条等,这些平台都会通过对用户的日志数据进行分析,从而进一步推荐用户喜欢的东西。日志数据是结构化明显的数据,还有一些数据结构化不明显,例如图片、音频、视频等,这些数据因果关系弱,就需要人工对其进行标注。
3.高速性
大数据的高速性是指数据增长快速,处理快速。每一天,各行各业的数据都在呈现指数性爆炸增长。在许多场景下,数据都具有时效性,如搜索引擎要在几秒中内呈现出用户所需数据。企业或系统在面对快速增长的海量数据时,必须要高速处理,快速响应。
4.价值密度低
大数据的低价值密度性是指在海量的数据源中,真正有价值的数据少之又少,许多数据可能是错误的,是不完整的,是无法利用的。总体而言,有价值的数据占据数据总量的密度极低,提炼数据好比浪里淘沙。
5.商业价值高
相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识,并运用于农业、金融、医疗等各个领域,从而最终达到改善社会治理、提高生产效率、推进科学研究的效果,实现其商业价值。
二、结构化数据,非结构化并举例
结构化数据,简单来说就是数据库,也可称作行数据,它是由二维表结构来逻辑表达和实现的数据,严格地遵循数据格式与长度规范,主要通过关系型数据库进行存储和管理。因此,有时也把所有数据都具有相同的字段或属性的结构化数据称为关系数据。
实际上,在日常工作生活中,我们也是能常常见到结构化数据,典型的结构化数据包括:信用卡号码、日期、财务金额、电话号码、地址、产品名称等。再如,企业的ERP、财务系统;医疗HIS数据库;教育一卡通;政府行政审批;其他核心数据库等。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**