【抽象代数】环、子环、理想、商环、环的同态

二、环

设R是一个非空集合,如果R中有两种代数,对于其中一种R是一个交换群(用加法表示),另一种R是半群(用乘法表示),而且满足分配律
a ( b + c ) = a b + a c ( a + b ) c = a c + b c , ∀ a , b , c ∈ R a(b+c)=ab+ac (a+b)c = ac+bc ,\forall a,b,c \in R a(b+c)=ab+ac(a+b)c=ac+bc,a,b,cR
则称R为环。环=阿贝尔加群+乘法半群

例:

整数的模m的剩余类 Z m Z_m Zm

  • Z m Z_m Zm对于加法是交换群
  • 定义 Z m Z_m Zm的乘法运算 a ‾   o   b ‾ = a b ‾ , ∀ a , b ∈ Z \overline{a} \ o \ \overline{b} = \overline{ab},\forall a,b \in Z a o b=ab,a,bZ

幺环=R对于乘法 是幺半群,将此单位元记为1或e

交换环=乘法满足交换律。全体整数集合Z可以构成一个交换环。

交换幺环

除环=R中非零元的全体对于乘法构成群的环

域=R中非零元的全体对于乘法构成交换群的环

零因子

设R是一个环, a , b ∈ R a,b \in R a,bR a ≠ 0 , b ≠ 0 a \neq 0,b\neq 0 a=0,b=0,若 a b = 0 ab =0 ab=0,则称a为R的一个左零因子,b为R中的一个右零因子,都简称为零因子。

整环=无零因子的交换幺环

性质

1)一个环没有零因子 ⇔ \Leftrightarrow R满足左右消去律。

2)设 R ∗ = R − { 0 } R^* = R-\{0\} R=R{0} ,且为无零因子环,则R中所有非零元对于R的加法具有相同的阶,且当这个共同的阶有限时必为素数。

环的特征

设R为无零因子环,若R中非零元的阶为无穷,则称R的特征为0,若R中所有的非零元都是有限P阶的(p为素数),则称R的特征为P。

子环与理想

子环

设R为环, R 1 R_1 R1是R的非空子集,若 R 1 R_1 R1对于R的加法和乘法构成环,则称 R 1 R_1 R1是R的子环。

子环的判定

设R为环, R 1 R_1 R1 R R R的非空子集,则 R 1 R_1 R1 R R R的子环的充分必要条件对于 ∀ a , b ∈ R 1 , a − b ∈ R , a b ∈ R 1 \forall a,b \in R_1, a-b \in R ,ab \in R_1 a,bR1,abR,abR1

理想

设R为环,I为R的子环,如果I满足条件 a ∈ I , x ∈ R ⇒ x a ∈ I a \in I , x \in R \Rightarrow xa \in I aI,xRxaI,则称I为R的左理想。

既是左理想,又是右理想,就是双边理想。

例:

0、R是环R的理想,称为平凡理想。

在交换环上,左理想、右理想、双边理想的概念是一样的。

整数环Z的任一子环必形如mZ,mZ是Z的双边理想

理想的判定

理想的充要条件: a − b ∈ I , a x , y a ∈ I , ∀ a , b ∈ I , x , y ∈ R a - b \in I , ax,ya \in I , \forall a,b \in I ,x,y \in R abI,ax,yaI,a,bI,x,yR

R是幺环: x a , a y ∈ I ⇔ x a y ∈ I xa,ay \in I \Leftrightarrow xay \in I xa,ayIxayI

R是交换环: x a , a y ∈ I ⇔ x a ∈ I xa,ay \in I \Leftrightarrow xa \in I xa,ayIxaI

性质

1) { R i } i ∈ x \{R_i\}_{i\in x} {Ri}ix是环R的理想,则 ∩ i ∈ x R i \cap_{i \in x} R_i ixRi R R R的理想。

  • 设A是R的非空子集,所有R中包含A的理想的交仍然是R的理想,称为由A生成的理想,记为 < A > <A> <A>,易知 < A > <A> <A>是R中包含A的最小理想。

主理想

理想中只由一个元素a生成,记 < A > = < a > <A>=<a> <A>=<a>,称为由a生成的主理想。

若R为幺环,则
< a > = { ∑ i = 1 m x i a y j ∣ ∀ x i , y j ∈ R , m ≥ 1 } <a>=\{\sum\limits^{m}\limits_{i=1}x_i ay_j | \forall x_i,y_j \in R ,m\ge 1\} <a>={i=1mxiayjxi,yjR,m1}
若R为交换环,则
< a > = { r a + n a ∣ r ∈ R , n ∈ Z } <a> = \{ra+na | r \in R,n\in Z\} <a>={ra+narR,nZ}
若R为交换幺环,则
< a > = a R = R a = { r a ∣ r ∈ R } <a> = aR = Ra =\{ra | r\in R\} <a>=aR=Ra={rarR}
一个交换幺环称为主理想环,若它的每个理想都是主理想。

商环

I I I是环 R R R的理想,定义关系 ∼ \sim
a ∼ b ⇔ a − b ∈ I a \sim b \Leftrightarrow a-b \in I ababI
则关系 ∼ \sim 满足反身性、对称性、传递性, ∼ \sim 是等价关系。

同余关系

∼ \sim 对于二元运算加法和乘法,满足同余关系
a − b ∈ I , a 1 − b 1 ∈ I 加 法 : ⇒ ( a + a 1 ) − ( b + b 1 ) = a − b + a 1 − b 1 ∈ I 乘 法 : ⇒ a a 1 − b b 1 = a ( a 1 − b 1 ) + ( a − b ) b 1 ∈ I a-b \in I ,a_1 - b_1 \in I\\ 加法:\Rightarrow (a+a_1) -(b+b_1) = a-b +a_1-b_1 \in I \\ 乘法:\Rightarrow aa_1 - bb_1 = a(a_1-b_1)+(a-b)b_1 \in I abI,a1b1I(a+a1)(b+b1)=ab+a1b1Iaa1bb1=a(a1b1)+(ab)b1I

商环

设I是R的理想,在R中定义关系 ∼ \sim , a ∼ b ⇔ a − b ∈ I a \sim b \Leftrightarrow a-b \in I ababI,则关系 ∼ \sim 是等价关系,且对于环的加法和乘法是同余关系,记 a ∈ R a \in R aR所在的等价类为 a + I a+I a+I,在R/I上定义加法、乘法: ( a + I ) + ( b + I ) = ( a + b ) + I ( a + I ) ( b + I ) = a b + I (a+I)+(b+I) = (a+b)+I \\(a+I)(b+I)=ab+I (a+I)+(b+I)=(a+b)+I(a+I)(b+I)=ab+I,则集合R/I对于上述的加法和乘法运算构成一个环,称R对于理想I的商环。

Z m = Z / m Z Z_m = Z/mZ Zm=Z/mZ是一系列商环,当m>0时,称Zm为整数环Z模m的剩余类环。

性质

1)R是交换环,则R/I也是交换环;R是幺环,则R/I是幺环,且 1 + I 1+I 1+I是单位。

环的同态

R 1 , R 2 R_1,R_2 R1,R2为两个环,f为R1到R2的一个映射。如果对于 ∀ a , b ∈ R 1 , f ( a + b ) = f ( a ) + f ( b ) , f ( a b ) = f ( a ) f ( b ) \forall a,b \in R_1,f(a+b)=f(a)+f(b),f(ab)=f(a)f(b) a,bR1,f(a+b)=f(a)+f(b),f(ab)=f(a)f(b),则称f为一个同态。根据f是单射、满射、双射,将f分为单同态、满同态、同构。

零同态

R 1 , R 2 R_1,R_2 R1,R2是两个环,定义 ϕ ( a ) = 0 , ∀ a ∈ R 1 \phi(a)=0, \forall a \in R_1 ϕ(a)=0,aR1, ϕ \phi ϕ是同态,称为零同态。

自然同态

设I是环R的理想,定义R到R/I的自然映射 π : R → R / I , π ( a ) = a + I \pi : R \rightarrow R/I , \pi(a)=a+I π:RR/I,π(a)=a+I,为一个满同态,称为自然同态。

性质

1) f f f是环 R 1 R_1 R1 R 2 R_2 R2的同态,则 k e r f = { a ∈ R 1 ∣ f ( a ) = 0 } kerf = \{a \in R_1 | f(a) = 0\} kerf={aR1f(a)=0} R 1 R_1 R1的理想。

环的同态定理
  • f f f是环 R 1 R_1 R1 R 2 R_2 R2的满同态,则 R 1 / k e r f ≃ R 2 R_1/_{ker f} \simeq R_2 R1/kerfR2
  • f f f是环 R 1 R_1 R1 R 2 R_2 R2的满同态,$k = kerf $,则有以下结论:
    • f f f建立了 R 1 R_1 R1的包含k的子环与 R 2 R_2 R2的子环之间的一一对应
    • 上述映射将理想映射到理想
    • I I I R 1 R_1 R1中包含k的理想,有 R 1 / I ≃ R 2 / f ( I ) R_1/_{I} \simeq R_2/_{f(I)} R1/IR2/f(I)
  • 6
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 抽象代数是一门研究代数结构的数学分支,它研究的对象是代数系统的一般性质和结构。抽象代数的核心概念包括群、和域等,通过定义这些代数结构的公理和性质,研究它们之间的关系和相互作用。 王颖答案pdf是一个文件,其中包含了对抽象代数相关问题的解答和讲解。这份pdf可以帮助学习者更好地理解和掌握抽象代数的概念和方法。在这份答案pdf中,王颖可能会介绍群的定义、性质以及其中的基本定理,如Lagrange定理、同态定理等。此外,王颖还可能讲解的定义和性质,如的可逆性、素元和最大理想等重要概念。此外,她可能会讲解域的特点和性质,如域的可分性、超越扩域等。 在答案pdf中,王颖可能会通过例题和解题过程,帮助学习者更好地理解和运用抽象代数的知识。她可能会提供一些练习题目,以帮助学习者更好地巩固所学内容。此外,王颖可能还会提供一些参考资料和学习资源,以便学习者进一步深入学习抽象代数的知识。 总之,抽象代数王颖答案pdf是一份有助于学习者理解和掌握抽象代数知识的文件。通过学习这份pdf,学习者可以更好地理解和运用抽象代数的概念和方法,提高自己在这一领域的能力和水平。 ### 回答2: 抽象代数是数学的一个分支,研究的对象是抽象的代数结构,如群、、域等。而王颖答案pdf是指王颖老师给出的关于抽象代数题目的解答,以pdf文件的形式发布。王颖老师是抽象代数领域的知名专家,丰富的教学和研究经验使得她的答案对于学习者来说具有很高的参考价值。 王颖答案pdf的内容可能包括了抽象代数中的各种概念、定理、证明以及应用等。这些答案可以帮助学生更好地理解抽象代数中的概念和原理,并且通过反复研读和思考,培养学生的抽象思维能力和解题能力。王颖答案pdf还可以作为学习的参考资料,可以帮助学生更好地复习和巩固所学的知识,提高解题水平。 同时,王颖答案pdf的发布也是为了方便学生在自主学习时查阅参考。学生可以根据自己的需要选择内容进行阅读,并结合王颖老师的解答方法进行习题的解答,帮助他们更好地学习和掌握抽象代数的知识。 总而言之,抽象代数王颖答案pdf是一份具有重要学习价值的资料,对于学习抽象代数的学生来说是一份宝贵的学习资源。通过学习和运用其中的知识和方法,学生可以更好地理解和应用抽象代数的概念和理论,提高自己的数学水平。 ### 回答3: 抽象代数是一门研究代数结构的数学学科,同时也是数学的主要分支之一。它涉及到群论、论、域论等等概念和性质的研究。抽象代数的目的是通过研究代数结构的一般性质和规律,来揭示数学中的普遍规律和内在结构。 而“王颖答案pdf”指的是一份关于抽象代数中的问题和解答的文档或文件。这份文档有可能是王颖老师或者其他专家整理编写的,用来帮助学生理解和学习抽象代数的知识。 抽象代数王颖答案pdf这个问题的具体情况可能是在某个抽象代数的课堂上,或者是通过网络等途径,我们得到了这份pdf文件。这份文件中可能包含了许多抽象代数的问题以及对应的答案和解析,用来帮助学生巩固和加深对该学科的理解。 这份pdf文件的优点是可以提供以往类似问题的解答,帮助学生更好地理解和运用抽象代数的理论和方法。它还可以作为学习的参考资料,供学生们自主学习和复习使用。同时,这份文件可能也包含了一些例题和习题,供学生们自我测试和巩固知识。 总之,抽象代数王颖答案pdf是一份包含抽象代数问题和解答的文档,用来帮助学生理解和学习抽象代数的知识。它具有提供解答、复习和自我测试等功能,对于学生来说是一份很有价值的学习资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值