- 博客(23)
- 收藏
- 关注
原创 【论文笔记】Simulating Unknown Target Models for Query-Efficient Black-box Attacks
入选CVPR2021,一篇有原作者讲解的文章~非常详细,所以这里就记录一些自己曾经迷惑的点 链接任何网络都能山寨!新型黑盒对抗攻击模拟未知网络进行攻击Contribution1.通过训练一个名为“模拟器”的广义替代模型,提出了一种新的黑盒攻击。训练使用知识提取损失在模拟器和采样网络之间进行元学习。训练后,模拟器只需要几个查询就可以准确地模拟训练中看不到的任何目标模型。2.在训练中消除目标模型后,我们发现了一种新的安全威胁:拥有关于目标模型的最少信息也可以伪造该模型,以实现高效的查询攻击。(这条是凑数的
2021-11-17 11:35:17
1402
原创 【论文笔记】A Closer Look at Accuracy vs. Robustness
去年这时候看的文章。。。主要研究了模型鲁棒性和准确性的tradeoff,提出在一定情况下,同时实现鲁棒性和准确性是有可能的。Contribution1.通过实验测量,我们发现多个图像数据集是分离的2.我们证明了这种分离意味着存在一个鲁棒且完全精确的分类器,该分类器可以通过对局部Lipschitz函数进行舍入来获得。与先前的推测[12,16,57]相比,鲁棒性和准确性原则上可以同时实现。3.研究了当前训练方法产生的分类器的平滑性和泛化特性。我们观察到,AT、TRADE和RST的训练方法产生了健壮的分类
2021-11-11 15:02:27
2530
原创 【论文笔记】AdvDrop: Adversarial Attack to DNNs by Dropping Information
一篇当时也没怎么看懂也没留点笔记的文章。。。Motivation我们都知道对抗扰动是在图片上添加了一些对DNN有意义但对人类无意义且大多数时间无法察觉的特征。反过来想,如果删除一些人类无法察觉但对DNN至关重要的特征呢?毕竟人类可以很容易识别信息丢失的视觉对象,甚至只有轮廓人类也可以识别。Contribution1.提出了AdvDrop这种攻击2.实验证实该攻击的有效性(targeted和non-targeted)3.丢失信息和DNN的注意力可视化,以解释AdvDropMethod这篇文章并
2021-11-08 20:43:59
819
原创 【论文笔记】Enhancing Adversarial Example Transferability with an Intermediate Level Attack
不做笔记的论文=没看。。。Contribution1.提出了一种新的方法Intermediate Level Attack(ILA),该方法通过增加模型预先指定层上的干扰来增强黑盒对抗转移能力(在现有的攻击上进行fine tune)。并进行了全面的评估,表明该方法在多个数据集的多个模型上采用了最先进的方法。2.在经验观察的指导下,引入一个程序,仅使用源模型来选择一个最大化迁移性的层,从而避免在参数优化过程中对传输模型进行评估。3.解释了使用中间特征映射优化对抗样本有效果的原因。Motivation
2021-11-07 17:34:57
848
原创 【学习小记】BERT+GPT
睡了一下午把所有状态都睡没了。。。但还是不要错过打卡!BERT这是第二遍整理了,对BERT的印象:非常类似于CV中的VGG16这样的特征提取网络。。。词嵌入的新时代—ELMo embeddings首先明确一下词嵌入是啥:单词无法直接输入进机器学习模型,通过词嵌入,我们可以使用向量来表示单词及单词之间的关系。词嵌入一般使用预训练好的。为啥这里说新时代呢,主要是最普通的词嵌入,一个单词永远是相同的向量。但一个单词常常有多重含义,也有很多固定搭配,为啥不能根据上下文来学习对应的词嵌入呢?因此就来到了语境
2021-08-20 22:42:16
221
原创 【学习小记】Transformer:Seq2seq model with self-attention
很久之前就想了解Transformer了,一直没行动。。。这次DataWhale给机会了便冲,本来想学西瓜书来着,南瓜书都准备好了。。。以及学习内容真是一次比一次硬核,图神经网络感觉还是可以的,但这个真的。。。不然我也不会提前一天写笔记,赶在最后一晚绝对整不完呀。。。seq2seq模型序列到序列模型,顾名思义就是一个序列生成另一个序列。由编码器和解码器组成,其中编码器会把信息转换为一个向量(上下文context)。整个序列处理完后编码器把context发送给解码器,解码器再逐项生成输入序列中的元素。
2021-08-18 21:25:39
279
原创 【学习小记】最后的任务!创建数据集!
一个月就这么过去了,好快啊~暂且不研究类里的东西了=-=先看一下一些比较实用的一些功能合并大图组成小图小图的邻接矩阵存储在大图邻接矩阵的对角线上。大图邻接矩阵、属性矩阵、预测目标矩阵分别为:通过如下方法就可以啦。先截图=-=PDF不能复制文字...
2021-07-09 23:18:37
92
原创 【学习小记】基于图神经网络的图表征学习方法
能学一点是一点吧。本次教程依旧来自DataWhale.基于图神经网络的图表征学习方法图表征学习,一言以蔽之,用图学图。基于图同构网络(GIN)的图表征网络的实现图同构网络(Graph Isomorphism Network, GIN)的图表征网络是当前最经典的图表征学习网络。该图表征学习主要包含两个过程:1、首先计算得到节点表征;2、其次对图上各个节点的表征做图池化(Graph Pooling),或称为图读出(Graph Readout),得到图的表征(Graph Representation)。
2021-07-05 22:25:10
285
2
原创 【学习小记+论文笔记】超大图上的节点表征学习-Cluster-GCN
没想到直接上论文了,非常硬核。。。。超大图进行图神经网络训练面临的问题使用普通的基于SGD的图神经网络的训练会面对以下问题:1、随着网络层数增加,计算成本呈指数增长2、保存整个图的信息和每一次每个节点的表征到内存,消耗巨大有些论文提出的方法无需保存整个图的信息和每一层节点的表征,但这些方法可能会损失预测精度或者并没有明显提高显存利用率。所以来学习Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convol
2021-07-01 23:03:35
382
1
原创 【学习小记】数据完整存于内存的数据集类+节点预测与边预测任务实践
本次教程依旧来自DataWhale。GNN组对学习在此之前先补充一个error:CUDA error: the provided PTX was compiled with an unsupported toolchain找了好久,差点重启服务器了。其实是装包的时候,匹配的CUDA版本不对。。。InMemoryDataset这部分不做重点了,自定义一个数据可全部存储到内存的数据集类,简而言之自定义数据集时候用。直接看怎么构造一个数据集。这里用的PubMed来改,虽然Planetoid类包含了,但这
2021-06-27 22:15:55
734
原创 【学习小记】基于图神经网络的节点表征学习
本次学习内容来自Datawhale,地址5-基于图神经网络的节点表征学习.md数据集相关出来混迟早要还的=-=首先了解一下数据集的性质print(f'Number of nodes: {data.num_nodes}') # 节点数量print(f'Number of edges: {data.num_edges}') # 边数量print(f'Number of node features: {data.num_node_features}') # 节点属性的维度print(f'Number
2021-06-23 23:38:37
295
原创 【学习小记】消息传递图神经网络
睡了一下午,晚上就完全不想学习了。。。卡也不想打考试也不想复习了。。。。以及感觉边看边记笔记这样比较好。消息传递范式有了这个图算是比较明朗了!选定A为target node之后,先更新其他邻接节点,最后更新A。消息传递图神经网络的数学表述:其中那个方框框表示可微分,具有排列不变性(函数输出结果与输入参数的排列无关)γ\gammaγ和ϕ\phiϕ表示可微分的函数。如MLPs.note:此次组对学习约定,节点属性data.x是节点的第0层节点表征,第h层节点表征经过一次节点间的信息传递产生第h+
2021-06-19 23:29:48
470
2
原创 【学习小记】作业记录
import torchimport torch_geometricimport gcclass Data(object): def __init__(self, lunwen=None, jigou=None, zuozhe=None, edge_index=None, edge_a2p=None, edge_a2i=None, y=None, **kwargs): #**kwargs 传入的参数是 dict 类型 # Args: # x (Tensor.
2021-06-16 23:39:01
95
原创 【学习小记】零基础入门语音识别Task6-一些拓展知识
语音识别基础语音识别全称为“自动语音识别”,Automatic Speech Recognition (ASR),**一般是指将语音序列转换成文本序列。**即给定输入序列O={O1,…,On},寻找最可能的词序列W={W1,…,Wm},即寻找使得概率P(W|O)最大的词序列。贝叶斯公式表示为:其中P(O|W) 叫做声学模型,描述的是给定词W时声学观察为O的概率;P(W)叫做语言模型,负责计算某个词序列的概率;P(O)是观察序列的概率,是固定的。语音选择的基本单位是帧(Frame),一帧数据是由一小段语
2021-04-22 18:14:06
185
原创 【学习小记】零基础入门语音识别-Task5:泛化误差、模型评估、集成学习了解
泛化误差当模型在测试集等除训练集以外数据集表现糟糕时,往往会称模型泛化能力差,也称泛化误差大。泛化能力受到模型结构(复杂度)的影响。这里只讨论对数据集过拟合的情况。当模型太复杂,就容易过拟合,导致模型泛化能力不够即泛化误差大。以树模型为例,树越茂盛,深度越深,枝叶越多,模型就越复杂,因此调参时目标比较明确:减少模型复杂度,防止过拟合。要同时小心过拟合和欠拟合!追求平衡~模型评估两种方法:Holdout检验、交叉检验、留一验证、自助法Holdout检验:数据集按一定比例(一般按七三开)分训练集和
2021-04-21 23:28:21
390
原创 【学习小记】零基础入门语音识别-Task4
这次感觉就是着重于整个预测的流程?!最近倒是要用到CNN,简单做一下CNN相关知识的笔记好了。卷积神经网络CNN的结构一般包含这几个层:1)输入层:用于数据的输入2)卷积层:使用卷积核进行特征提取和特征映射------>可以多次重复使用3)激励层:由于卷积也是一种线性运算,因此需要增加非线性映射(也就是激活函数)4)池化层:进行下采样,对特征图稀疏处理,减少数据运算量----->可以多次重复使用5)Flatten操作:将二维的向量,拉直为一维的向量,从而可以放入下一层的神经网络中
2021-04-19 22:54:12
102
原创 【学习小记】零基础入门语音识别Task3-特征提取(以及使用playsound播放失败的问题解决方法)
本来是学习打卡的,一时兴起想听听处理的数据到底是个啥动静。。。遂一顿百度,最终锁定playsound,适用于.wav和.mp3格式,且算上头部声明就两行代码,完美!代码如下from playsound import playsound playsound(‘test.mp3’)结果就报了如下的错误一顿搜都没找到是为啥,其实只是需要把音频文件和代码放到同个文件夹下,害。真就人工6分钟的事人工智能6小时呗。。。接下来进入正题。MFCC特征提取MFCC即Mel Frequency Cepstr
2021-04-17 23:09:52
283
原创 【学习小记】零基础入门语音识别-Task2赛题数据介绍与分析
今天的内容有点不知道说啥=-=赛题数据集本次比赛的数据集来自Kaggle的“Eating Sound Collection”(可商用), 数据集中包含20种不同食物的咀嚼声音,赛题任务是给这些声音数据建模,准确分类。数据探索几方面收获:波形幅度包络的查看:plt.figure(figsize=(14, 5))librosa.display.waveplot(data1,sr=sampling_rate1)以及声谱图(声音或其他的频率随时间变化的表示)的查看:plt.figure(figs
2021-04-16 00:43:02
131
原创 【学习小记】零基础入门语音识别Task1
如题,来自DataWhale的四月学习计划。。。既不懂Tensorflow也不懂语音识别所以更要冲哈哈哈哈哈哈哈既然是识别,大体流程还是没太大变化的,分别为加载深度学习框架加载音频处理库特征提取及数据集的建立建立模型:搭建CNN网络、预测加载深度学习框架和音视频处理库这里没啥太多好说的import pandas as pdimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn
2021-04-13 23:29:01
143
原创 【论文笔记】Practical no-box Adversarial Attacks against DNNs
并不擅长自学,也不擅长做笔记…虽然自觉有点丢人,但一点一点见证自己的成长也还不错啦~所以还是把图传一下,万一又有好心的大佬给我指错了呢!
2021-04-13 16:48:47
553
原创 【论文笔记】Robust Physical-World Attacks on Deep Learning Visual Classification
一篇之前看的时候蛮顺但现在实在看不明白的文章=-=目前为止物理可实现攻击一般是指在实物上动手脚,让分类器对实物的图片误分类。摘要最近的研究表明,最先进的深度神经网络(DNNs)很容易受到来自输入的小幅度扰动的攻击。鉴于新兴物理系统在安全关键情况下使用DNN,对抗性示例可能误导这些系统并导致危险情况。因此,理解物理世界中的对抗性例子是开发弹性学习算法的重要一步。我们提出了一种通用的攻击算法,鲁棒物理扰动(RP2),在不同的物理条件下产生鲁棒的视觉对抗扰动。利用道路标志分类的实际案例,我们表明,在各种环境条
2021-02-03 11:55:47
1064
原创 【论文笔记】DELVING INTO TRANSFERABLE ADVERSARIAL EXAMPLES AND BLACK-BOX ATTACKS
【摘要】深层神经网络的一个有趣的特性是存在对抗性样本,它可以在不同的体系结构之间进行转换。这些可转移的通用示例可能严重阻碍基于神经网络的深层次应用。以往的工作主要是利用小规模数据集来研究可移植性。在这项工作中,我们首先对大模型和大规模数据集的可转移性进行了广泛的研究,而且我们也是第一个研究目标敌方示例及其目标标签的可转移性的。我们研究了非针对性和针对性的对抗性例子,并表明虽然可转移的非目标性对抗性示例很容易找到,但是使用现有方法生成的有针对性的对抗性示例几乎不会随目标标签一起转移。因此,我们提出了新的基于
2020-12-15 22:36:44
922
4
原创 Pytorch安装问题
用anaconda装的时候 老是显示找不到清华镜像源的blablabla怒换pip装 这里感谢https://blog.csdn.net/qq_41282258/article/details/98961667这位老哥救命了简直。。。以及在cmd里 一定要记得前缀加上python -m 。。。。。。前些天还以为自己pip也GG掉了 心态直接崩了但给jupyter notebook添加环境的时候没整明白=-= 看了https://blog.csdn.net/yl_best/article/det.
2020-10-02 16:13:23
147
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人