人工智能、机器学习以及深度学习对于这三个名词,相信很多人都不陌生,但对于他们之间的关系以及联系并不清楚,需要知道的是,想要入门人工智能,那么人工智能相关信息都需要了解。那么人工智能、机器学习以及深度学习之间的联系是什么?
人工智能、机器学习以及深度学习之间的联系是什么?
机器学习是人工智能技术的核心概念,通过模拟人类的决策过程来搭建神经网络,解决现实世界中的问题。
而深度学习是机器学习工具和技术的子领域,深度学习的应用非常广泛,几乎涵盖了所有需要“思考”的应用情景,既包括人类的思考,也包括虚拟的“思维”。
机器学习的应用情景更适合公司和企业,因为机器学习能够解决一些实际的商业问题,如利用监督式学习模型(如回归模型和分级模型)来做出预测,或者利用无监督模型(如群集模型)来发现未知领域。
人工智能、机器学习以及深度学习之间的联系是什么?
深度学习是机器学习的一部分,在一些应用领域也取得了令人瞩目的发展,如模式识别、图像分类、自然语言处理、自动驾驶等等。相较于深度学期,随机森林(random forests)和梯度推进(gradientboosting)等机器学习技术在解决商业问题时表现更好。
深度学习是尝试学习具有多层神经网络的大数据集多层级特征,然后做出预测性决策。这就意味着深度学习包含了两个阶段:
第一步:要利用大量输入数据来“训练”神经网络;
第二步:用这个接受过“训练”的神经网络来“推测”,预测新数据的分布。
由于涉及的参数非常多,训练数据集规模也相当大,所以在神经网络的训练阶段,对参与训练的计算机算力要求非常的高。
免费领取学习资料