FITC-PEG-LA,Fluorescein-PEG-Lipoic acid可以用于研究蛋白质之间的相互作用

物理参数:
英文名称:FITC-PEG-LA,Fluorescein-PEG-Lipoic acid
中文名称:荧光素聚乙二醇硫辛酸酯
分子量:1k,2k,3.4k,5k,10k,20k(可按需定制)
性状:固体或液体(根据分子量决定)
规格标准:1g,5g,10g,可提供mg级以及kg级的产品开发服务
储存条件:-20℃,干燥,避免频繁解冻和冷冻
溶解性:溶于大部分有机溶剂,溶于水
产品可定制:根据需要的试剂进行定制,具体的可以线上和商家沟通
结构式:

简述:
FITC-PEG-LA是一种荧光标记试剂。FITC,即异硫氰酸荧光素,是一种常用的荧光染料,具有良好的光稳定性和生物相容性。PEG,即聚乙二醇,是一种常见的高分子聚合物,具有良好的水溶性和生物活性。LA,则代表着某种特定的连接基团,能够与多种生物分子进行连接,从而实现对目标分子的标记。
FITC-PEG-LA可以用于标记细胞膜、细胞器等结构,从而实现对细胞内部结构的可视化研究。在分子生物学中,它可以用于研究蛋白质之间的相互作用。
此外,西安凯新生物科技有限公司的FITC-PEG-LA可以被用作生物标记物,用于追踪和示踪生物分子在体内的动态过程。 
相关试剂:
FITC-PEG-AA 
荧光素聚乙二醇乙酸 
荧光素 PEG 乙酸 
8-Arm-PEG-FITC 
4-Arm-PEG-FITC 
FITC-PEG-EPO 
FITC-PEG-PLGA 
FITC-PEG-DBCO 
FITC-PEG-PLA
FITC-PEG-AcA
Fluorescein-PEG-Acrylamide
荧光素聚乙二醇甲基丙烯酸酯
FITC-PEG-MAC
荧光素聚乙二醇巯基
FITC-PEG-SH
荧光素聚乙二醇全反式维甲酸
FITC-PEG-Retinoic acid
FITC-PEG-Tretinoin
荧光素聚乙二醇罗丹明
FITC-PEG-Rhodamine
荧光素聚乙二醇炔基 
FITC-PEG-Alkyne
FITC-PEG-MAL
荧光素聚乙二醇多巴胺
FITC-PEG-Dopamine
荧光素聚乙二醇活性酯
FITC-PEG-NHS
荧光素聚乙二醇甲基丙烯酸酯
FITC-PEG-MAC
FITC-Acrylates
FITC-PEG-Acrylates
FITC-ACRL
FITC-PEG-ACRL
FITC-PEG-FITC 
双荧光素聚乙二醇 
PLLA-PEG-FITC
聚左旋乳酸-聚乙二醇-荧光素
荧光素聚乙二醇邻二硫吡啶
FITC-PEG-OPSS 
荧光素聚乙二醇磷脂
FITC-PEG-DSPE
原包装应尽量选择避光,阴暗,干燥的地方进行存放,同时此试剂仅用于科研实验。
综合上述皆由西安凯新生物科技有限公司的小编wudong所整理完成,感兴趣的伙伴可以留言哦!


 

  • 7
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
OpenCV可以通过色彩空间转换函数和图像分割函数来实现光谱拆分应用示例-FITC检测。 首先,将彩色图像转换为HSV色彩空间,HSV色彩空间的H通道可以表示颜色的色相,S通道可以表示颜色的饱和度,V通道可以表示颜色的亮度。然后,根据需要对图像进行阈值分割,得到二值图像。最后,根据二值图像提取感兴趣区域并进行处理。 下面是一个简单的示例代码,用于检测FITC标记的细胞: ```python import cv2 # 读取彩色图像 image = cv2.imread('cell.jpg') # 将彩色图像转换为HSV色彩空间 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 设置阈值,提取FITC标记的细胞 low_green = (50, 50, 50) high_green = (70, 255, 255) mask = cv2.inRange(hsv, low_green, high_green) # 对二值图像进行形态学操作,去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) # 提取感兴趣区域 contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 绘制感兴趣区域 for contour in contours: cv2.drawContours(image, [contour], 0, (0, 255, 0), 2) # 显示结果 cv2.imshow('FITC Detection', image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上述代码中,`cv2.cvtColor`函数用于将彩色图像转换为HSV色彩空间,`cv2.inRange`函数用于根据阈值提取FITC标记的细胞,`cv2.morphologyEx`函数用于对二值图像进行形态学操作,去除噪点,`cv2.findContours`函数用于提取感兴趣区域,并使用`cv2.drawContours`函数绘制感兴趣区域。最后使用`cv2.imshow`函数显示结果。 注意,在使用`cv2.findContours`函数时,需要根据OpenCV的版本进行调整。在OpenCV 3.x版本中,`cv2.findContours`函数返回两个值,而在OpenCV 4.x版本中,`cv2.findContours`函数只返回一个值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值