通用Agent如何评估效果:智能体评测方案AgentCLUE-General(Manus暂时领先)

在这里插入图片描述

写在前面

大型语言模型 (LLM) 驱动的 Agent(智能体)正以前所未有的速度从学术研究走向大众视野,它们被寄予厚望,能够自主理解复杂指令、规划并执行多步骤任务、甚至调用多种工具与真实世界交互。然而,正如 RUC AI Box 团队和 SuperCLUE 等评估机构所指出的,当前 Agent 的发展面临着一个核心挑战:如何科学、客观、可复现地评估其“通用智能”水平?

许多 Agent 的演示令人印象深刻,但在实际应用中却可能“水土不服”,表现参差不齐。这种评估的“模糊性”不仅阻碍了技术的健康迭代,也让用户和开发者难以清晰地认识不同 Agent 产品的真实能力边界和适用场景。

为了解决这一痛点,SuperCLUE 团队推出的 AgentCLUE-General 这样的中文通用 AI 智能体测评基准应运而生。它试图建立一个可衡量、可比较的框架,来评估 Agent 在中文应用场景下的真实能力。

本文将结合 AgentCLUE-General 的测评思路和您提供的文章内容,深入探讨:

  1. 通用 Agent 评估的核心挑战与必要性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值