4.paddlepaddle之10行代码mnist手写数字识别

本文介绍了如何利用PaddlePaddle深度学习框架,仅用10行代码完成MNIST手写数字识别任务。首先,详细说明了MNIST数据集的特点,包括数据量和分类情况。接着,逐步讲解模型构建与训练过程,包括数据预处理、模型选择(LeNet)、优化器配置、训练参数设定以及模型评估,最终模型在测试集上达到了98.55%的高准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.mnist手写数字数据集

 

 mnist手写数字数据集是经常被用来初学者使用的图片数据集,其图片大小为28*28,一般的图片都是(H,W,3),由于mnist数据集图片都是数字,所以可以不需要RGB,其数据集图片如下:

对于该数据集标签为数字所代表的值,如上图片为5,其对应的数字也是5,所以这是一个十分类的任务。

整个mnist有60000张训练集,10000张测试集,相较于类别数来说样本量相当充足。

2.模型构建与训练

第一步,在头部引入必要所需的环境包,代码如下:

import paddle
from paddle.vision.transforms import Normalize

第二步,获取mnist数据集,paddle直接就提供了,不过由于我们需要模型适配对应的格式,所以对mnist的数据集进行format的处理,代码如下:

transform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaccys

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值