题意:给你一个字符矩阵,求出它的最小覆盖子矩阵,即使得这个子矩阵的无限复制扩张之后的矩阵,能包含原来的矩阵。 即二维的最小覆盖子串。
和HDOJ1358 Period 一样,对于(1....x)串x-next[x]就是它自身的最小覆盖串,所以可以把每行的所有覆盖求出来,找到他们的最小值,
即是最小覆盖子矩阵的宽,一些博客把每行的所有最小覆盖的公倍数求了出来,这样的确可以覆盖整个矩阵但不是最小覆盖子矩阵,是充分不必要条件,比如
2 8
ABCDEFAB
AAAABAAA
答案是6,不是8
同理再找高即可这样的复杂度有点高,可以把宽找到后,把每行字符串当作“字符”再进行kmp:
//1008 KB 172 ms
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int r,c,comwid,comhigh;
char mapp[10100][80];
int cnt[80],next[80];
char s[80];
int nexthigh[10100];
void getnext(char str[])
{
int i=0;
int j=next[0]=-1;
while(str[i]!=0){
while(j>-1&&str[i]!=str[j])
j=next[j];
j++;
i++;
next[i]=j;
}
}
void getnexthigh()
{
int i=1;
int j=nexthigh[1]=0;
while(i<r+1){
while(j>0&&strcmp(mapp[i],mapp[j]))
j=nexthigh[j];
i++;
j++;
nexthigh[i]=j;
}
}
int main()
{
scanf("%d%d",&r,&c);
for(int i=1;i<=r;i++)
{
scanf("%s",mapp[i]);
strcpy(s,mapp[i]);
getnext(mapp[i]);
int minsub= c-next[c];
cnt[minsub]++;
for(int j=c-1;j>minsub;j--){
s[j]=0;
int y=0;
for(int x=0;mapp[i][y];x++,y++){
if(!s[x]) x=0;
if(s[x]!=mapp[i][y]) break;
}
if(!mapp[i][y]) cnt[j]++;
}
}
cnt[c]=r;
for(int i=1;i<=c;i++)
if(cnt[i]==r){
comwid=i;
break;
}
for(int i=1;i<=r;i++)
mapp[i][comwid]=0;
getnexthigh();
comhigh= r-(nexthigh[r+1]-1);
printf("%d\n",comhigh*comwid);
return 0;
}
其实同理上面那个把字符串整个kmp的优化,求宽的时候也可以把字符串整个kmp,同样的道理,这样代码就变得简洁高效了:
//田神代码 1948 KB 63 ms
//思路:
/*
1.把每行字符串看作一个整体对行求next数组
2.将矩阵转置
3.进行操作1,注意这里的行是原来的列,列是原来的行,相当于求原来列的next数组
4.求出len-next[len]即最小不重复子串的长度作为子矩形的边长
*/
#include <cstdio>
#include <cstring>
char s[10005][80], rs[80][10005];
int R[10005], C[10005];
int r, c;
void get_nextR()
{
R[0] = -1;
int j = -1, i = 0;
while(i < r)
{
if(j == -1 || strcmp(s[i], s[j]) == 0)
{
i++;
j++;
R[i] = j;
}
else
j = R[j];
}
}
void get_nextC()
{
C[0] = -1;
int j = -1, i = 0;
while(i < c)
{
if(j == -1 || strcmp(rs[i], rs[j]) == 0)
{
i++;
j++;
C[i] = j;
}
else
j = C[j];
}
}
int main()
{
while(scanf("%d %d", &r, &c) != EOF)
{
for(int i = 0; i < r; i++)
scanf("%s", s[i]);
get_nextR();
for(int i = 0; i < r; i++)
for(int j = 0; j < c; j++)
rs[j][i] = s[i][j];
get_nextC();
printf("%d\n", (r - R[r]) * (c - C[c]));
}
}