POJ 2185 Milking Grid (KMP) (好题)


题意:给你一个字符矩阵,求出它的最小覆盖子矩阵,即使得这个子矩阵的无限复制扩张之后的矩阵,能包含原来的矩阵。 即二维的最小覆盖子串。

和HDOJ1358 Period 一样,对于(1....x)串x-next[x]就是它自身的最小覆盖串,所以可以把每行的所有覆盖求出来,找到他们的最小值,

即是最小覆盖子矩阵的宽,一些博客把每行的所有最小覆盖的公倍数求了出来,这样的确可以覆盖整个矩阵但不是最小覆盖子矩阵,是充分不必要条件,比如

2 8
ABCDEFAB
AAAABAAA

答案是6,不是8

同理再找高即可这样的复杂度有点高,可以把宽找到后,把每行字符串当作“字符”再进行kmp:

//1008 KB	172 ms
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int r,c,comwid,comhigh;
char mapp[10100][80];
int cnt[80],next[80];
char s[80];
int nexthigh[10100];
void getnext(char str[])
{
    int i=0;
    int j=next[0]=-1;
    while(str[i]!=0){
        while(j>-1&&str[i]!=str[j])
            j=next[j];
        j++;
        i++;
        next[i]=j;
    }

}
void getnexthigh()
{
    int i=1;
    int j=nexthigh[1]=0;
    while(i<r+1){
        while(j>0&&strcmp(mapp[i],mapp[j]))
            j=nexthigh[j];
        i++;
        j++;
        nexthigh[i]=j;
    }
}
int main()
{
    scanf("%d%d",&r,&c);
    for(int i=1;i<=r;i++)
    {
        scanf("%s",mapp[i]);
        strcpy(s,mapp[i]);
        getnext(mapp[i]);
        int minsub= c-next[c];
        cnt[minsub]++;
        for(int j=c-1;j>minsub;j--){
            s[j]=0;
            int y=0;
            for(int x=0;mapp[i][y];x++,y++){
                if(!s[x]) x=0;
                if(s[x]!=mapp[i][y]) break;
            }
            if(!mapp[i][y]) cnt[j]++;
        }
    }
    cnt[c]=r;
    for(int i=1;i<=c;i++)
        if(cnt[i]==r){
            comwid=i;
            break;
        }

    for(int i=1;i<=r;i++)
        mapp[i][comwid]=0;
    getnexthigh();
    comhigh= r-(nexthigh[r+1]-1);
    printf("%d\n",comhigh*comwid);
    return 0;


}

其实同理上面那个把字符串整个kmp的优化,求宽的时候也可以把字符串整个kmp,同样的道理,这样代码就变得简洁高效了:

//田神代码 1948 KB	63 ms
//思路:
/*
1.把每行字符串看作一个整体对行求next数组
2.将矩阵转置
3.进行操作1,注意这里的行是原来的列,列是原来的行,相当于求原来列的next数组
4.求出len-next[len]即最小不重复子串的长度作为子矩形的边长
*/
#include <cstdio>
#include <cstring>
char s[10005][80], rs[80][10005];
int R[10005], C[10005];
int r, c;

void get_nextR()
{
    R[0] = -1;
    int j = -1, i = 0;
    while(i < r)
    {
        if(j == -1 || strcmp(s[i], s[j]) == 0)
        {
            i++;
            j++;
            R[i] = j;
        }
        else
            j = R[j];
    }
}

void get_nextC()
{
    C[0] = -1;
    int j = -1, i = 0;
    while(i < c)
    {
        if(j == -1 || strcmp(rs[i], rs[j]) == 0)
        {
            i++;
            j++;
            C[i] = j;
        }
        else
            j = C[j];
    }
}

int main()
{
    while(scanf("%d %d", &r, &c) != EOF)
    {
        for(int i = 0; i < r; i++)
            scanf("%s", s[i]);
        get_nextR();
        for(int i = 0; i < r; i++)
            for(int j = 0; j < c; j++)
                rs[j][i] = s[i][j];
        get_nextC();
        printf("%d\n", (r - R[r]) * (c - C[c]));
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值