POJ 2046 Power Strings(连续重复串重复次数--后缀数组)

14 篇文章 0 订阅
8 篇文章 0 订阅

连续重复串:如果一个字符串L 是由某个字符串S 重复R 次而得到的,则称L 是一个连续重复串。R 是这个字符串的重复次数。

题意:求连续重复串的最大重复次数R


思路:当然可以用kmp。

用后缀数组的话,穷举字符串S 的长度k,然后判断是否满足。判断的时候,先看字符串L 的长度能否被k 整除,再看suffix(0) suffix(k)的最长公共前缀是否等于n-k。在询问最长公共前缀的时候,suffix(1)是固定的,所以RMQ问题没有必要做所有的预处理, 只需求出height 数组中的每一个数到height[rank[0]]之间的最小值即可。整个做法的时间复杂度为O(n)。

建后缀数组用倍增法nlogn的算法会在本题T掉,本来后缀数组的常数就比较大,用DC3 O(n)建数组,刚好j卡过

//Accepted	29940K	2766MS
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN = 1e6+100;
#define F(x) ((x)/3+((x)%3==1? 0:tb))
#define G(x) ((x)<tb? (x)*3+1:((x)-tb)*3+2)
int wa[MAXN*3],wb[MAXN*3],wv[MAXN*3],wss[MAXN*3];
int c0(int *r,int a,int b)
{
    return r[a]==r[b] && r[a+1]==r[b+1] &&r[a+2]==r[b+2];
}
int c12(int k,int *r,int a,int b)
{
    if(k==2) return r[a]<r[b]||(r[a]==r[b]&&c12(1,r,a+1,b+1));
    else return r[a]<r[b] ||(r[a]==r[b]&&wv[a+1]<wv[b+1]);

}
void sort(int *r,int *a,int *b,int n,int m)
{
    int i;
    for(i=0;i<n;i++) wv[i]=r[a[i]];
    for(i=0;i<m;i++) wss[i]=0;
    for(i=0;i<n;i++) wss[wv[i]]++;
    for(i=1;i<m;i++) wss[i]+=wss[i-1];
    for(i=n-1;i>=0;i--) b[--wss[wv[i]]]=a[i];

}
void dc3(int *r,int *sa,int n,int m)
{
    int i,j,*rn=r+n;
    int *san=sa+n,ta=0,tb=(n+1)/3,tbc=0,p;
    r[n]=r[n+1]=0;
    for(i=0;i<n;i++) if(i%3!=0) wa[tbc++]=i;
    sort(r+2,wa,wb,tbc,m);
    sort(r+1,wb,wa,tbc,m);
    sort(r,wa,wb,tbc,m);
    for(p=1,rn[F(wb[0])]=0,i=1;i<tbc;i++)
        rn[F(wb[i])]=c0(r,wb[i-1],wb[i])? p-1:p++;
    if(p<tbc) dc3(rn,san,tbc,p);
    else for(i=0;i<tbc;i++) san[rn[i]]=i;
    for(i=0;i<tbc;i++) if(san[i]<tb) wb[ta++]=san[i]*3;
    if(n%3==1) wb[ta++]=n-1;
    sort(r,wb,wa,ta,m);
    for(i=0;i<tbc;i++) wv[wb[i]=G(san[i])]=i;
    for(i=0,j=0,p=0;i<ta&&j<tbc;p++)
        sa[p]=c12(wb[j]%3,r,wa[i],wb[j]) ? wa[i++] : wb[j++];
    for(;i<ta;p++) sa[p]=wa[i++];
    for(;j<tbc;p++) sa[p]=wb[j++];
}

void da(int str[],int sa[],int rank[],int height[],int n,int m)
{
    for(int i=n;i<n*3;i++)
        str[i]=0;
    dc3(str,sa,n+1,m);
    int i,j,k=0;
    for(i=0;i<=n;i++)rank[sa[i]]=i;
    for(i=0;i<n;i++)
    {
        if(k) k--;
        j=sa[rank[i]-1];
        while(str[i+k]==str[j+k]) k++;
        height[rank[i]]=k;
    }
}

char str[MAXN];
int r[MAXN];
int sa[MAXN],rank[MAXN],height[MAXN];
int ask[MAXN];
int main()
{
    while(~scanf("%s",str))
    {
        int n=strlen(str);
        if(n==1&&str[0]=='.') break;
        for(int i=0;i<=n;i++) r[i]=str[i];
        da(r,sa,rank,height,n,130);
        int p=rank[0];
        ask[p]=height[p];
        for(int rnk=p-1;rnk>=1;rnk--)
            ask[rnk]=min(ask[rnk+1],height[rnk]);
        for(int L=1;L<=n;L++)
        {
            if(n%L!=0) continue;
            if(rank[L]>rank[0]) continue;
            if(ask[rank[L]+1]==n-L)
            {
                printf("%d\n",n/L);
                break;
            }
        }
    }
    return 0;
}


KMP:

//5052K	125MS	C++	631B
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN = 1e6+100;
char str[MAXN];
int next[MAXN];
void getnext(char str[],int m,int next[])
{
    int i,j;
    j=next[0]=-1;
    i=0;
    while(i<m)
    {
        while(-1!=j&&str[i]!=str[j] )j=next[j];
        next[++i]=++j;
    }
}
int main()
{
    while(~scanf("%s",str))
    {
        int len=strlen(str);
        if(len==1&&str[0]=='.') break;
        getnext(str,len,next);
        if( len%(len-next[len])==0 ) printf("%d\n",len/(len-next[len]));
        else puts("1");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值