问题描述
从镜面材质的圆上一点发出一道光线反射N次后首次回到起点。
问本质不同的发射的方案数。
输入描述
第一行一个整数T,表示数据组数。T≤10 对于每一个组,共一行,包含一个整数,表示正整数N(1≤N≤106)。
输出描述
对于每一个组,输出共一行,包含一个整数,表示答案。
输入样例
1 4
输出样例
4
题解:
和UVA 12493 Stars类似 http://blog.csdn.net/kalilili/article/details/47671545
大致题意:圆上有偶数n个点,每m个点连起来,最后可以把所有点串联起来就合法。问有多少个m可以完成串联,串联后形状相同的算重复
会发现这两个题目的模型一样, 这题可以看成“圆上有n个点,每m个点连起来,最后可以把所有点串联起来就合法,有多少本质不同的方法”
所以也可用欧拉函数算出来
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define reveach(i, v) for (__typeof((v).rbegin()) i = (v).rbegin(); i != (v).rend(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
#define rep(i,n) for ( int i=0; i< int(n); i++ )
using namespace std;
typedef long long ll;
#define X first
#define Y second
#define PB push_back
#define MP make_pair
typedef pair<int,int> pii;
template <class T>
inline bool RD(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1 , ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void PT(T x) {
if (x < 0) putchar('-') ,x = -x;
if (x > 9) PT(x / 10);
putchar(x % 10 + '0');
}
const int N = 1e6+100;
int phi[N];
void euler(){
REP(i,N-10) phi[i] = i;
for(int i = 2; i <= N - 10; i += 2) phi[i] /= 2;
for(int i = 3; i <= N - 10; i += 2)
if( phi[i] == i )
for(int j = i; j <= N - 10 ; j += i ) phi[j] = phi[j] - phi[j] / i;
}
int main(){
int T; RD(T);
euler();
while( T-- ){
int n; RD(n);
PT( phi[n + 1] ); puts("");
}
}