1.乘法法则
先放结论:
P
(
x
)
=
f
(
x
)
g
(
x
)
d
p
d
x
=
d
f
d
x
g
(
x
)
+
f
(
x
)
d
g
d
x
P(x)=f(x)g(x) \\[2ex] \frac{\operatorname{d}p}{\operatorname{d}x}=\frac{\operatorname{d}f}{\operatorname{d}x}g(x)+f(x)\frac{\operatorname{d}g}{\operatorname{d}x}
P(x)=f(x)g(x)dxdp=dxdfg(x)+f(x)dxdg
2.乘法法则的应用(推导 d d x x n \frac{\operatorname{d}}{\operatorname{d}x}x^n dxdxn 正数部分)
当
f
=
x
,
g
=
x
时
:
d
d
x
x
2
=
2
x
当
f
=
x
2
,
g
=
x
时
:
d
d
x
x
3
=
2
x
⋅
x
+
x
2
⋅
1
=
3
x
2
当
f
=
x
3
,
g
=
x
时
:
d
d
x
x
4
=
3
x
2
⋅
x
+
x
3
⋅
1
=
4
x
3
⋯
由
数
学
归
纳
法
得
出
:
d
d
x
x
n
=
n
x
n
−
1
(
n
=
0
,
1
,
2
,
3
…
)
\begin{array}{l} 当f=x,g=x时: \\[2ex] \quad\frac{\operatorname{d}}{\operatorname{d}x}x^2=2x \\[2ex] 当f=x^2,g=x时: \\[2ex] \quad\frac{\operatorname{d}}{\operatorname{d}x}x^3=2x\cdot x+x^2\cdot1=3x^2 \\[2ex] 当f=x^3,g=x时: \\[2ex] \quad\frac{\operatorname{d}}{\operatorname{d}x}x^4=3x^2\cdot x+x^3\cdot1=4x^3 \\[2ex] \cdots \\[2ex] 由数学归纳法得出: \\[2ex] \frac{\operatorname{d}}{\operatorname{d}x}x^n=nx^{n-1}(n=0,1,2,3\ldots) \\[2ex] \end{array}
当f=x,g=x时:dxdx2=2x当f=x2,g=x时:dxdx3=2x⋅x+x2⋅1=3x2当f=x3,g=x时:dxdx4=3x2⋅x+x3⋅1=4x3⋯由数学归纳法得出:dxdxn=nxn−1(n=0,1,2,3…)
上面是n为自然数的情况,下面将推广到正数,在推广到正数前,先证明下求导幂函数:
d
d
x
f
2
=
d
f
d
x
⋅
f
+
f
⋅
d
f
d
x
=
2
f
d
f
d
x
d
d
x
f
3
=
2
f
d
f
d
x
⋅
f
+
f
2
⋅
d
f
d
x
=
3
f
2
d
f
d
x
d
d
x
f
4
=
3
f
2
d
f
d
x
⋅
f
+
f
3
⋅
d
f
d
x
=
4
f
3
d
f
d
x
⋯
由
数
学
归
纳
法
得
出
:
d
d
x
f
n
=
n
f
n
−
1
d
f
d
x
(
n
=
0
,
1
,
2
,
3
…
)
\begin{array}{l} \frac{\operatorname{d}}{\operatorname{d}x}f^2=\frac{\operatorname{d}f}{\operatorname{d}x}\cdot f+f\cdot\frac{\operatorname{d}f}{\operatorname{d}x}=2f\frac{\operatorname{d}f}{\operatorname{d}x} \\[2ex] \frac{\operatorname{d}}{\operatorname{d}x}f^3=2f\frac{\operatorname{d}f}{\operatorname{d}x}\cdot f+f^2\cdot\frac{\operatorname{d}f}{\operatorname{d}x}=3f^2\frac{\operatorname{d}f}{\operatorname{d}x} \\[2ex] \frac{\operatorname{d}}{\operatorname{d}x}f^4=3f^2\frac{\operatorname{d}f}{\operatorname{d}x}\cdot f+f^3\cdot\frac{\operatorname{d}f}{\operatorname{d}x}=4f^3\frac{\operatorname{d}f}{\operatorname{d}x} \\[2ex] \cdots \\[2ex] 由数学归纳法得出: \\[2ex] \frac{\operatorname{d}}{\operatorname{d}x}f^n=nf^{n-1}\frac{\operatorname{d}f}{\operatorname{d}x}(n=0,1,2,3\ldots) \\[2ex] \end{array}
dxdf2=dxdf⋅f+f⋅dxdf=2fdxdfdxdf3=2fdxdf⋅f+f2⋅dxdf=3f2dxdfdxdf4=3f2dxdf⋅f+f3⋅dxdf=4f3dxdf⋯由数学归纳法得出:dxdfn=nfn−1dxdf(n=0,1,2,3…)
这里求导幂函数的过程中其实还包含了链式法则,下节课会说明,下面就将幂法则推广到正数范围:
f
(
x
)
=
x
=
x
1
2
d
d
x
f
2
=
2
x
d
x
d
x
=
1
d
f
d
x
=
1
2
x
−
1
2
f(x)=\sqrt{x}=x^{\frac{1}{2}} \\[2ex] \frac{\operatorname{d}}{\operatorname{d}x}f^2=2\sqrt{x}\frac{\operatorname{d}\sqrt{x}}{\operatorname{d}x}=1 \\[2ex] \frac{\operatorname{d}f}{\operatorname{d}\sqrt{x}}=\frac{1}{2}x^{-\frac{1}{2}} \\[2ex]
f(x)=x=x21dxdf2=2xdxdx=1dxdf=21x−21
3.推导乘法法则
如下图所示
lim
Δ
x
→
0
Δ
p
Δ
x
=
f
⋅
Δ
g
Δ
x
+
g
⋅
Δ
f
Δ
x
+
Δ
g
⋅
Δ
f
Δ
x
=
f
d
g
d
x
+
g
d
f
d
x
+
0
=
f
d
g
d
x
+
g
d
f
d
x
\begin{aligned} \lim_{\Delta x \to 0}\frac{\Delta p}{\Delta x}&=\frac{f\cdot\Delta g}{\Delta x}+\frac{g\cdot\Delta f}{\Delta x}+\frac{\Delta g\cdot\Delta f}{\Delta x} \\ &=f\frac{\operatorname{d}g}{\operatorname{d}x}+g\frac{\operatorname{d}f}{\operatorname{d}x}+0 \\ &=f\frac{\operatorname{d}g}{\operatorname{d}x}+g\frac{\operatorname{d}f}{\operatorname{d}x} \end{aligned}
Δx→0limΔxΔp=Δxf⋅Δg+Δxg⋅Δf+ΔxΔg⋅Δf=fdxdg+gdxdf+0=fdxdg+gdxdf
4.推导除法法则
q
(
x
)
=
f
(
x
)
g
(
x
)
→
f
(
x
)
=
g
(
x
)
q
(
x
)
d
f
d
x
=
d
g
d
x
q
(
x
)
+
g
(
x
)
d
q
d
x
d
f
d
x
=
d
g
d
x
⋅
f
(
x
)
g
(
x
)
+
g
(
x
)
d
q
d
x
d
q
d
x
=
d
f
d
x
⋅
1
g
(
x
)
−
d
g
d
x
⋅
f
(
x
)
g
2
(
x
)
=
d
f
d
x
⋅
g
(
x
)
−
f
(
x
)
⋅
d
g
d
x
g
2
(
x
)
\begin{aligned} q(x)&=\frac{f(x)}{g(x)}\rightarrow f(x)=g(x)q(x) \\[2ex] \frac{\operatorname{d}f}{\operatorname{d}x}&=\frac{\operatorname{d}g}{\operatorname{d}x}q(x)+g(x)\frac{\operatorname{d}q}{\operatorname{d}x} \\[2ex] \frac{\operatorname{d}f}{\operatorname{d}x}&=\frac{\operatorname{d}g}{\operatorname{d}x}\cdot\frac{f(x)}{g(x)}+g(x)\frac{\operatorname{d}q}{\operatorname{d}x} \\[2ex] \frac{\operatorname{d}q}{\operatorname{d}x}&=\frac{\operatorname{d}f}{\operatorname{d}x}\cdot\frac{1}{g(x)}-\frac{\operatorname{d}g}{\operatorname{d}x}\cdot\frac{f(x)}{g^2(x)} \\[2ex] &=\frac{\frac{\operatorname{d}f}{\operatorname{d}x}\cdot g(x)-f(x)\cdot\frac{\operatorname{d}g}{\operatorname{d}x}}{g^2(x)} \end{aligned}
q(x)dxdfdxdfdxdq=g(x)f(x)→f(x)=g(x)q(x)=dxdgq(x)+g(x)dxdq=dxdg⋅g(x)f(x)+g(x)dxdq=dxdf⋅g(x)1−dxdg⋅g2(x)f(x)=g2(x)dxdf⋅g(x)−f(x)⋅dxdg
5.除法法则的应用(推导 d d x x n \frac{\operatorname{d}}{\operatorname{d}x}x^n dxdxn 负数部分)
q
(
x
)
=
f
(
x
)
g
(
x
)
=
1
x
N
=
x
−
N
d
d
x
(
x
−
N
)
=
0
−
1
⋅
N
x
N
−
1
(
x
N
)
2
=
−
N
x
−
N
−
1
q(x)=\frac{f(x)}{g(x)}=\frac{1}{x^N}=x^{-N} \\[2ex] \begin{aligned} \frac{\operatorname{d}}{\operatorname{d}x}(x^{-N})&=\frac{0-1\cdot Nx^{N-1}}{(x^N)^2} \\[2ex] &=-Nx^{-N-1} \end{aligned} \\
q(x)=g(x)f(x)=xN1=x−Ndxd(x−N)=(xN)20−1⋅NxN−1=−Nx−N−1
最后,无理数也适用幂法则的,这里就不证明了,例如:
d
d
x
x
π
=
π
x
π
−
1
\frac{\operatorname{d}}{\operatorname{d}x}x^\pi=\pi x^{\pi-1}
dxdxπ=πxπ−1