[MIT]微积分重点 第七课 乘法法则和除法法则 学习笔记

1.乘法法则

先放结论:
P ( x ) = f ( x ) g ( x ) d ⁡ p d ⁡ x = d ⁡ f d ⁡ x g ( x ) + f ( x ) d ⁡ g d ⁡ x P(x)=f(x)g(x) \\[2ex] \frac{\operatorname{d}p}{\operatorname{d}x}=\frac{\operatorname{d}f}{\operatorname{d}x}g(x)+f(x)\frac{\operatorname{d}g}{\operatorname{d}x} P(x)=f(x)g(x)dxdp=dxdfg(x)+f(x)dxdg

2.乘法法则的应用(推导 d ⁡ d ⁡ x x n \frac{\operatorname{d}}{\operatorname{d}x}x^n dxdxn 正数部分)

当 f = x , g = x 时 : d ⁡ d ⁡ x x 2 = 2 x 当 f = x 2 , g = x 时 : d ⁡ d ⁡ x x 3 = 2 x ⋅ x + x 2 ⋅ 1 = 3 x 2 当 f = x 3 , g = x 时 : d ⁡ d ⁡ x x 4 = 3 x 2 ⋅ x + x 3 ⋅ 1 = 4 x 3 ⋯ 由 数 学 归 纳 法 得 出 : d ⁡ d ⁡ x x n = n x n − 1 ( n = 0 , 1 , 2 , 3 … ) \begin{array}{l} 当f=x,g=x时: \\[2ex] \quad\frac{\operatorname{d}}{\operatorname{d}x}x^2=2x \\[2ex] 当f=x^2,g=x时: \\[2ex] \quad\frac{\operatorname{d}}{\operatorname{d}x}x^3=2x\cdot x+x^2\cdot1=3x^2 \\[2ex] 当f=x^3,g=x时: \\[2ex] \quad\frac{\operatorname{d}}{\operatorname{d}x}x^4=3x^2\cdot x+x^3\cdot1=4x^3 \\[2ex] \cdots \\[2ex] 由数学归纳法得出: \\[2ex] \frac{\operatorname{d}}{\operatorname{d}x}x^n=nx^{n-1}(n=0,1,2,3\ldots) \\[2ex] \end{array} f=xg=xdxdx2=2xf=x2g=xdxdx3=2xx+x21=3x2f=x3g=xdxdx4=3x2x+x31=4x3dxdxn=nxn1(n=0,1,2,3)
在这里插入图片描述

上面是n为自然数的情况,下面将推广到正数,在推广到正数前,先证明下求导幂函数:
d ⁡ d ⁡ x f 2 = d ⁡ f d ⁡ x ⋅ f + f ⋅ d ⁡ f d ⁡ x = 2 f d ⁡ f d ⁡ x d ⁡ d ⁡ x f 3 = 2 f d ⁡ f d ⁡ x ⋅ f + f 2 ⋅ d ⁡ f d ⁡ x = 3 f 2 d ⁡ f d ⁡ x d ⁡ d ⁡ x f 4 = 3 f 2 d ⁡ f d ⁡ x ⋅ f + f 3 ⋅ d ⁡ f d ⁡ x = 4 f 3 d ⁡ f d ⁡ x ⋯ 由 数 学 归 纳 法 得 出 : d ⁡ d ⁡ x f n = n f n − 1 d ⁡ f d ⁡ x ( n = 0 , 1 , 2 , 3 … ) \begin{array}{l} \frac{\operatorname{d}}{\operatorname{d}x}f^2=\frac{\operatorname{d}f}{\operatorname{d}x}\cdot f+f\cdot\frac{\operatorname{d}f}{\operatorname{d}x}=2f\frac{\operatorname{d}f}{\operatorname{d}x} \\[2ex] \frac{\operatorname{d}}{\operatorname{d}x}f^3=2f\frac{\operatorname{d}f}{\operatorname{d}x}\cdot f+f^2\cdot\frac{\operatorname{d}f}{\operatorname{d}x}=3f^2\frac{\operatorname{d}f}{\operatorname{d}x} \\[2ex] \frac{\operatorname{d}}{\operatorname{d}x}f^4=3f^2\frac{\operatorname{d}f}{\operatorname{d}x}\cdot f+f^3\cdot\frac{\operatorname{d}f}{\operatorname{d}x}=4f^3\frac{\operatorname{d}f}{\operatorname{d}x} \\[2ex] \cdots \\[2ex] 由数学归纳法得出: \\[2ex] \frac{\operatorname{d}}{\operatorname{d}x}f^n=nf^{n-1}\frac{\operatorname{d}f}{\operatorname{d}x}(n=0,1,2,3\ldots) \\[2ex] \end{array} dxdf2=dxdff+fdxdf=2fdxdfdxdf3=2fdxdff+f2dxdf=3f2dxdfdxdf4=3f2dxdff+f3dxdf=4f3dxdfdxdfn=nfn1dxdf(n=0,1,2,3)
在这里插入图片描述

这里求导幂函数的过程中其实还包含了链式法则,下节课会说明,下面就将幂法则推广到正数范围:
f ( x ) = x = x 1 2 d ⁡ d ⁡ x f 2 = 2 x d ⁡ x d ⁡ x = 1 d ⁡ f d ⁡ x = 1 2 x − 1 2 f(x)=\sqrt{x}=x^{\frac{1}{2}} \\[2ex] \frac{\operatorname{d}}{\operatorname{d}x}f^2=2\sqrt{x}\frac{\operatorname{d}\sqrt{x}}{\operatorname{d}x}=1 \\[2ex] \frac{\operatorname{d}f}{\operatorname{d}\sqrt{x}}=\frac{1}{2}x^{-\frac{1}{2}} \\[2ex] f(x)=x =x21dxdf2=2x dxdx =1dx df=21x21
在这里插入图片描述

3.推导乘法法则

如下图所示
lim ⁡ Δ x → 0 Δ p Δ x = f ⋅ Δ g Δ x + g ⋅ Δ f Δ x + Δ g ⋅ Δ f Δ x = f d ⁡ g d ⁡ x + g d ⁡ f d ⁡ x + 0 = f d ⁡ g d ⁡ x + g d ⁡ f d ⁡ x \begin{aligned} \lim_{\Delta x \to 0}\frac{\Delta p}{\Delta x}&=\frac{f\cdot\Delta g}{\Delta x}+\frac{g\cdot\Delta f}{\Delta x}+\frac{\Delta g\cdot\Delta f}{\Delta x} \\ &=f\frac{\operatorname{d}g}{\operatorname{d}x}+g\frac{\operatorname{d}f}{\operatorname{d}x}+0 \\ &=f\frac{\operatorname{d}g}{\operatorname{d}x}+g\frac{\operatorname{d}f}{\operatorname{d}x} \end{aligned} Δx0limΔxΔp=ΔxfΔg+ΔxgΔf+ΔxΔgΔf=fdxdg+gdxdf+0=fdxdg+gdxdf
在这里插入图片描述

4.推导除法法则

q ( x ) = f ( x ) g ( x ) → f ( x ) = g ( x ) q ( x ) d ⁡ f d ⁡ x = d ⁡ g d ⁡ x q ( x ) + g ( x ) d ⁡ q d ⁡ x d ⁡ f d ⁡ x = d ⁡ g d ⁡ x ⋅ f ( x ) g ( x ) + g ( x ) d ⁡ q d ⁡ x d ⁡ q d ⁡ x = d ⁡ f d ⁡ x ⋅ 1 g ( x ) − d ⁡ g d ⁡ x ⋅ f ( x ) g 2 ( x ) = d ⁡ f d ⁡ x ⋅ g ( x ) − f ( x ) ⋅ d ⁡ g d ⁡ x g 2 ( x ) \begin{aligned} q(x)&=\frac{f(x)}{g(x)}\rightarrow f(x)=g(x)q(x) \\[2ex] \frac{\operatorname{d}f}{\operatorname{d}x}&=\frac{\operatorname{d}g}{\operatorname{d}x}q(x)+g(x)\frac{\operatorname{d}q}{\operatorname{d}x} \\[2ex] \frac{\operatorname{d}f}{\operatorname{d}x}&=\frac{\operatorname{d}g}{\operatorname{d}x}\cdot\frac{f(x)}{g(x)}+g(x)\frac{\operatorname{d}q}{\operatorname{d}x} \\[2ex] \frac{\operatorname{d}q}{\operatorname{d}x}&=\frac{\operatorname{d}f}{\operatorname{d}x}\cdot\frac{1}{g(x)}-\frac{\operatorname{d}g}{\operatorname{d}x}\cdot\frac{f(x)}{g^2(x)} \\[2ex] &=\frac{\frac{\operatorname{d}f}{\operatorname{d}x}\cdot g(x)-f(x)\cdot\frac{\operatorname{d}g}{\operatorname{d}x}}{g^2(x)} \end{aligned} q(x)dxdfdxdfdxdq=g(x)f(x)f(x)=g(x)q(x)=dxdgq(x)+g(x)dxdq=dxdgg(x)f(x)+g(x)dxdq=dxdfg(x)1dxdgg2(x)f(x)=g2(x)dxdfg(x)f(x)dxdg
在这里插入图片描述

5.除法法则的应用(推导 d ⁡ d ⁡ x x n \frac{\operatorname{d}}{\operatorname{d}x}x^n dxdxn 负数部分)

q ( x ) = f ( x ) g ( x ) = 1 x N = x − N d ⁡ d ⁡ x ( x − N ) = 0 − 1 ⋅ N x N − 1 ( x N ) 2 = − N x − N − 1 q(x)=\frac{f(x)}{g(x)}=\frac{1}{x^N}=x^{-N} \\[2ex] \begin{aligned} \frac{\operatorname{d}}{\operatorname{d}x}(x^{-N})&=\frac{0-1\cdot Nx^{N-1}}{(x^N)^2} \\[2ex] &=-Nx^{-N-1} \end{aligned} \\ q(x)=g(x)f(x)=xN1=xNdxd(xN)=(xN)201NxN1=NxN1
在这里插入图片描述

最后,无理数也适用幂法则的,这里就不证明了,例如:
d ⁡ d ⁡ x x π = π x π − 1 \frac{\operatorname{d}}{\operatorname{d}x}x^\pi=\pi x^{\pi-1} dxdxπ=πxπ1
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值