java opencv 基本操作16

这篇博客介绍了两种图像处理中的角点检测方法:哈里斯角点检测和goodFeaturesToTrack。通过Java实现的OpenCV库,详细展示了这两种算法的使用步骤,包括图像灰度化、角点检测、结果归一化和角点绘制。通过示例代码,演示了如何调整参数以获取最佳检测效果,并展示了检测结果。
摘要由CSDN通过智能技术生成

哈里斯角点检测cornerHarris

    /**
     * 哈里斯角点检测,角是图像中各个方向上强度变化很大的区域
     * cornerHarris(
     * Mat src,     --输入图像,灰度和float32类型
     * Mat dst       --输出图像
     * int blockSize,  --是拐角检测考虑的邻域大小
     * int ksize,      --使用的Sobel导数的光圈参数
     * double k       --哈里斯检测器自由参数
     * )
     */
    @Test
    public void testCornerHarris() {
    	Mat src = GeneralUtils.converMat("D:\\test\\t2.jpg");
    	
    	Mat gray = new Mat();
    	Mat result = new Mat();
    	
    	//转成灰度图
    	Imgproc.cvtColor(src, gray, Imgproc.COLOR_BGR2GRAY);
    	//角点检测
    	Imgproc.cornerHarris(gray, result, 2, 3, 0.04);
    	
    	Mat dst_norm = Mat.ones(result.size(), result.type());
    	//将检测到的值归一化到0~255之间,因为输出图像dst检测到的值是浮点数
        Core.normalize(result, dst_norm, 0, 255, Core.NORM_MINMAX);
        //将归一化后的图像像素值取绝对值,因为归一化后的图像有可能是负数
        Core.convertScaleAbs(dst_norm, dst_norm);
        
        //绘制角点
        for (int row = 0; row < dst_norm.rows(); row++) {
        	for (int col = 0; col < dst_norm.cols(); col++ ) {
        		double[] rsp = dst_norm.get(row, col);
        		if (rsp[0] > 140) {
        			Imgproc.circle(src, new Point(row, col), 5, new Scalar(0, 0, 255));
        		}
        	}
        }
        GeneralUtils.saveByteImg(src, "D:\\test\\cornerHarris.jpg");
    }

goodFeaturesToTrack角点检测

    /**
     * 角是图像中各个方向上强度变化很大的区域
     * goodFeaturesToTrack函数可以计算Harris角点和shi-tomasi角点,但默认情况下计算的是shi-tomasi角点
     * goodFeaturesToTrack( 
     * Mat src,    --8位或32位浮点型输入图像,单通道
     * Mat dst,    --保存检测出的角点
     * int maxCorners,   --角点数目最大值,如果实际检测的角点超过此值,则只返回前maxCorners个强角点
     * double qualityLevel,   --角点的品质因子
     * double minDistance,  --对于初选出的角点而言,如果在其周围minDistance范围内存在其他更强角点,则将此角点删除
     * Mat mask,    --指定感兴趣区,如不需在整幅图上寻找角点,则用此参数指定ROI
     * int blockSize,  --计算协方差矩阵时的窗口大小
     * bool useHarrisDetector,   --指示是否使用Harris角点检测,如不指定,则计算shi-tomasi角点
     * double harrisK   --Harris角点检测需要的k值
     * ) 
     */
    @Test
    public void testGoodFeaturesToTrack() {
    	Mat src = GeneralUtils.converMat("D:\\test\\t2.jpg");
    	

    	Mat gray = new Mat();
    	
    	//转成灰度图
    	Imgproc.cvtColor(src, gray, Imgproc.COLOR_BGR2GRAY);
    	MatOfPoint corners = new MatOfPoint();
    	//角点检测
    	Imgproc.goodFeaturesToTrack(gray, corners, 100, 0.01, 0.04, new Mat(), 3, false, 0.04);
    	
    	 //绘制角点
        for (int i = 0; i < corners.rows(); i++) {
        	double[] points = corners.get(i,0);
        	Imgproc.circle(src, new Point(points[0], points[1]), 5, new Scalar(0, 0, 255));
        }
        
        GeneralUtils.saveByteImg(src, "D:\\test\\goodFeaturesToTrack.jpg");
    }

《中医基础理论》

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

古智云开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值