Python numpy 归一化和标准化 代码实现

归一化 (Normalization)、标准化 (Standardization)和中心化/零均值化 (Zero-centered)

def normalization(data):
    _range = np.max(data) - np.min(data)
    return (data - np.min(data)) / _range


def standardization(data):
    mu = np.mean(data, axis=0)
    sigma = np.std(data, axis=0)
    return (data - mu) / sigma


更新,如果归一化后的范围是[-1, 1]的话,可以将normalization()函数改为:

def normalization(data):
    _range = np.max(abs(data))
    return data / _range


此外,我看了一些GitHub上面的代码,发现很多人在预处理输入到神经网络中的数据时,使用的normalization函数其实是进行了标准化,而不是归一化,比如:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值