差异分析和PPI网路图绘制教程

写在前面

在原文中,作者获得285个DEG,在此推文中共获得601个DEG。小杜的猜想是标准化的水段不同的原因吧,或是其他的原因。此外,惊奇的发现发表医学类的文章在附件中都不提供相关的信息文件,如DEG数据、GO、KEGG富集信息,或是其他相关的文件。唉!!!难道是怕别人复现结果不一致?仅仅提供对读者不关心的文件信息,我们猜想,这是不是期刊要求必须有附件,所以才产生两个文件呢????

获得本期教程数据和代码,后台回复关键词:「20240218」

若我们的分享对你有用,希望您可以「点赞+收藏+转发」,这是对小杜最大的支持。

2.4.1 原文中差异分析

原文中的结果描述,, we screened 471DEGs between therenal fibrosis group and the control group in GSE76882 using the R package “limma”

原文中图形

2.4.2 关于GSE76882数据集

共有274个数据集,其中99个对照组,175个肾纤维化样本。

作者这里就只是简单的分类而已,若细致的分,这里有些数据是可以不被使用的。

对下载的数据集进行分析可获得,前175列数据作为处理组,后99列数据作为对照组。

注意:你需要核对下载后的数据集与GEO数据库中信息是否一致。

2.4.3 差异分析

我们并不知道作者使用那种标准化手段处理数据。首先,我使用log2(x+1)的方式进行标准化,并使用其后面的数据进行差异分析。

2.4.3.1 数据标准化

##'@GSE76882标准化
df02 <- read.csv("00.GEO_RawData/GSE76882_uniq.exp.csv",header = T, row.names = 1)
nor82 <- log2(df02+1)
nor82[1:10,1:10]
write.csv(nor82,"01.GEO_norData/GSE76882_Nor.csv")

2.4.3.2 差异分析代码

  1. 创建文件夹和导入相关的包

dir.create('02.DEGs_analysis', recursive = TRUE)
library(limma)
library(dplyr)
  1. 导入数据 csv文件或TXT文件格式

##'##'@读取txt文件格式
#df <- read.table("***.txt", header = T, sep = "\t", row.names = 1, check.names = F)
##'@读取csv文件格式
df <- read.csv("01.GEO_norData/GSE76882_Nor.csv", header = T, check.names = F)

3. 创建比对文件信息 (1) 若你的数据样本不是统一的,需要知道详细信息代表什么。你可以这样创建。

group.list <- c(rep("normal", 25), rep("tumor",24), rep("tumor",42), rep("normal",99)) %>% factor(., levels = c("normal", "tumor"), ordered = F)

获得临床信息方法一

(2)若表达矩阵信息与我们这里一致,那么你可以直接创建即可。

「问:」如何将我们的表达矩阵按分类进行排列。

可以使用下来方法

A. 手动在execl中进行排列,在50个样本数据以内可以使用此方法。

B. 使用一下的方法(仅供参考)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杜的生信筆記

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值