芝诺悖论

           芝诺说阿基里斯让乌龟先跑一段的话,最终肯定跑不过乌龟。因为阿基里斯在追乌龟的过程中,只能不断的到达乌龟之前的出发点,而此时乌龟已经跑了一段了。也可以说成 一个人从A点走到B点,要先走完路程的1/2,再走完剩下总路程的1/2,再走完剩下的1/2……”如此循环下去,永远不能到终点。与我们的常识明显违背。比赛中,反超经常出现,而我们想去某个地方,也总能到达。

            为什么永远无法超过乌龟?芝诺的出发点里,存在着一个无限变小的量。即阿基里斯与乌龟的距离,随着阿基里斯的追赶,总存在这样一个无穷小量,还需要再追赶一段距离。那么让我们考虑上阿基里斯的速度和已经追赶的实践两个因素。其实只要速度足够快,追赶的实践足够长,两者之间的距离总会足够小,最终小到,与追赶的速度和时间的乘积面前,已经可以忽略,那这一刻,就可以追上并超越了。

芝诺的思考的无限小的距离的问题,最终还是可以转化成有限问题,而无限与有限,也正是微积分里面非常有意思的一块。有限但不规则的面积,可以通过切分成无限小块来近似出面积,无限小越小,面积约接近。银行计算复利,复利计算越频繁,利息越高,但终归趋于一个常数,不会无限增加。还希望在学习中慢慢去体会这种思想。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值