【论文阅读】ViewAL:Active Learning With Viewpoint Entropy for Semantic Segmentation

本文提出了一种名为ViewAl的主动学习策略,用于语义分割任务,利用视角熵来衡量模型在多视角图像中的不确定性。方法包括训练初始模型,计算视角熵以识别预测不一致的样本,然后使用KL散度选择最具信息量的图像,并通过超像素级别的不确定性计算减少标注成本。该策略旨在提高模型在不同视角下的泛化能力并优化标注效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Siddiqui Y, Valentin J, Nießner M. Viewal: Active learning with viewpoint entropy for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 9433-9443.

摘要

本文提出了ViewAl,一种新型的针对语义分割的主动学习策略,它探索了在不同视角图像的数据库(multi-view)的视角(viewpoint)的一致性。本文的核心观点是在不同视角下的图像通过模型预测的不一致性提供了一个可靠的不确定性的度量方法,这也激励模型能在物体在不同视角的观察下都表现的很好。另外,本文也也提出了一个超像素水平的不确定性计算方法。视角熵和超像素的结合使得模型能够高效的选择那些能改善网络的具有高信息量的样本。

介绍

提出了一个novel view-consistency-based uncertainty方法。具体的,提出了一个基于variance of predicted score function across multiple observations的视角熵公式。如果一个给定的图像中的目标(未标记)在不同的视角观测下的预测值不同,则预测失败;然后对于最不确定的那个样本来获取label。

另外,提出了一个基于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值