【论文阅读】ViewAL:Active Learning With Viewpoint Entropy for Semantic Segmentation

本文提出了一种名为ViewAl的主动学习策略,用于语义分割任务,利用视角熵来衡量模型在多视角图像中的不确定性。方法包括训练初始模型,计算视角熵以识别预测不一致的样本,然后使用KL散度选择最具信息量的图像,并通过超像素级别的不确定性计算减少标注成本。该策略旨在提高模型在不同视角下的泛化能力并优化标注效率。
摘要由CSDN通过智能技术生成

Siddiqui Y, Valentin J, Nießner M. Viewal: Active learning with viewpoint entropy for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 9433-9443.

摘要

本文提出了ViewAl,一种新型的针对语义分割的主动学习策略,它探索了在不同视角图像的数据库(multi-view)的视角(viewpoint)的一致性。本文的核心观点是在不同视角下的图像通过模型预测的不一致性提供了一个可靠的不确定性的度量方法,这也激励模型能在物体在不同视角的观察下都表现的很好。另外,本文也也提出了一个超像素水平的不确定性计算方法。视角熵和超像素的结合使得模型能够高效的选择那些能改善网络的具有高信息量的样本。

介绍

提出了一个novel view-consistency-based uncertainty方法。具体的,提出了一个基于variance of predicted score function across multiple observations的视角熵公式。如果一个给定的图像中的目标(未标记)在不同的视角观测下的预测值不同,则预测失败;然后对于最不确定的那个样本来获取label。

另外,提出了一个基于

dsvp是一种双阶段视角规划器,用于通过动态扩展实现快速探索。这个概念可以应用于多个领域,如机器人导航、无人机探索和虚拟现实等。 双阶段视角规划器的核心思想是将视角规划分为两个阶段:扩展阶段和动态阶段。在扩展阶段,规划器通过探索周围环境的不同视角来获得尽可能广泛的信息。它可以快速生成多个视角,并评估它们的价值和可行性,以找到最好的选择。这个阶段的目标是尽可能涵盖整个环境,同时保证视角之间的差异性。 在动态阶段,规划器将利用从扩展阶段获得的信息来制定更具体的策略。它可以根据实时的环境变化,对之前选定的视角进行调整和优化,以适应新的情况。这个阶段的目标是实现高效的探索,尽量避免不必要的重复和盲目的行为。 通过结合扩展阶段的快速探索和动态阶段的实时调整,dsvp可以在限定的时间内快速发现新的信息并做出相应的决策。它具有高效性、灵活性和鲁棒性,可以适用于各种复杂的环境和任务。此外,dsvp还可以与其他算法和技术结合使用,以进一步提升探索和规划的能力。 总的来说,dsvp是一种基于双阶段视角规划的快速探索方法,可以在不同领域中应用并获得良好的效果。它为机器人和无人机等系统的导航和探索,以及虚拟现实中的场景展示和用户体验等方面提供了一种强大的规划工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值