Siddiqui Y, Valentin J, Nießner M. Viewal: Active learning with viewpoint entropy for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 9433-9443.
摘要
本文提出了ViewAl,一种新型的针对语义分割的主动学习策略,它探索了在不同视角图像的数据库(multi-view)的视角(viewpoint)的一致性。本文的核心观点是在不同视角下的图像通过模型预测的不一致性提供了一个可靠的不确定性的度量方法,这也激励模型能在物体在不同视角的观察下都表现的很好。另外,本文也也提出了一个超像素水平的不确定性计算方法。视角熵和超像素的结合使得模型能够高效的选择那些能改善网络的具有高信息量的样本。
介绍
提出了一个novel view-consistency-based uncertainty方法。具体的,提出了一个基于variance of predicted score function across multiple observations的视角熵公式。如果一个给定的图像中的目标(未标记)在不同的视角观测下的预测值不同,则预测失败;然后对于最不确定的那个样本来获取label。
另外,提出了一个基于