Casanova A, Pinheiro P O, Rostamzadeh N, et al. Reinforced active learning for image segmentation[J]. arXiv preprint arXiv:2002.06583, 2020.
与以往的需要人工制定的启发式的采样策略不同,这个文章提出了采用强化学习(DQN)的方法进行主动学习策略的选择,通过迭代来优化自身采样策略。
这里样本的选择是基于矩形区域,而不是整个图像。
提出的端到端的方法,通过最大化每个类的iou来更新网络,这也解决了类不平衡的问题。
摘要
基于学习的语义分割方法有两个固有的挑战。首先,获取像素标签既昂贵又耗时。其次,真实的分割数据集是高度不平衡的:一些类别比其他类别丰富得多,使性能偏向于最具代表性的类别。本文中,我们感兴趣的是将人工标记工作集中在更大的数据池的一个小子集上,最大限度地减少这种工作,同时在保留集上最大限度地提高分割模型的性能。提出了一种新的基于深度强化学习(RL)的语义分割主动学习策略。代理学习一种策略,从未标记的数据池中选择要标记的有信息的小的图像区域构成的子集(相对于整个图像)。区域选择决策是由训练的分割模型得到的预测值和不确定性所确定。我们的方法提出了一种新的深度Q-network (DQN)公式的改进,用于主动学习,使其适应语义