[Kaggle比赛] 高频股价预测小结

本文介绍了在Kaggle的高频股价预测比赛中,通过分析问题、数据预处理、模型探索(如RNN/LSTM、CNN、全连接神经网络和XGBoost)以及参数调整,来提升预测准确性的过程。作者强调了特征工程在模型构建中的重要性,并分享了最佳实践,包括数据归一化、噪声处理以及模型融合的未来方向。
摘要由CSDN通过智能技术生成

高频股价预测

问题描述

Kaggle 比赛: CS410/EI339 Fall18’ Stock Price Prediction

  • 通过对交易委托账本(订单簿)中数据的学习,给定特定一只股票10个时间点股票的订单簿信息,预测下20个时间点中间价的均值。
  • 评价标准为均方根误差。
    RMSE ⁡ ( θ ^ ) = MSE ⁡ ( θ ^ ) = E ⁡ ( ( θ ^ − θ ) 2 ) \operatorname{RMSE}(\hat{\theta}) = \sqrt{\operatorname{MSE}(\hat{\theta})} = \sqrt{\operatorname{E}((\hat{\theta}-\theta)^2)} RMSE(θ^)=MSE(θ^) =E((θ^θ)2)
  • 交易时间为工作日9:30-11:30,13:00-15:00,快照频率3秒。
  • 股价的形成分为集合竞价和连续竞价
    – 集合竞价:9:15-9:25,开盘集合竞价,确定开盘价
    – 连续竞价:9:30之后,根据买卖双方的委托形成的价格
  • 竞价原则:价格优先,时间优先。
  • 交易委托账本具体信息:
    – Date - 日期
    – Time - 时间
    – MidPrice - 中间价(买入价与卖出价的平均值)
    – LastPirce - 最新成交价
    – Volume - 当日累计成交数量
    – BidPrice1 - 申买最高价
    – BidVolume1 - 申买最高价对应的量
    – AskPrice1 - 申卖最高价
    – AskVolume1 - 申卖最高价对应的量

问题分析

高频交易,是指从那些人们无法利用的、极为短暂的市场变化中寻求获利的自动化程序交易,比如某种证券买入价和卖出价差价的微小变化,或者某只股票在不同交易所之间的微小价差。这种交易的速度如此之快,以至于有些交易机构将自己的“服务器群组”安置到了离交易所的服务器很近的地方,以缩短交易指令通过光缆以光速传送的时间。一般是以电脑买卖盘程式进行

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值