图神经网络-01

已知图包含结点(Node)和边(Edge),如何用卷积的方法将节点嵌入到特征空间?

思路1:将卷积的概念推广到图——空间近邻的卷积;

思路2:应用数据处理的傅里叶域(Fourier Domain)等概念,基于光谱的方法。

这其中,GAT和GCN是常用的网络图神经网络模型。

接下来,介绍图的聚合(Aggregate)的定义:在图神经网络中,聚合操作用于节点特征的更新,例如下图通过邻居节点的特征来更新当前节点的特征,最终Readout从节点的特征表示中提取出图的全局特征。

归纳几篇图神经网络的方法:

NN4G(Neural network for Graphs)(2009):Neural Network for Graphs: A Contextual Constructive Approach | IEEE Journals & Magazine | IEEE Xplore

DCNN(Diffusion-Convolutional Neural Networks)(2015):https://arxiv.org/abs/1511.02136

MoNET(Mixture Model Networks)(2016):https://arxiv.org/pdf/1611.08402

GraphSAGE(2018):https://arxiv.org/pdf/1706.02216

GAT(Graph Attention Networks)(2018):https://arxiv.org/pdf/1710.10903.pdf

GIN(Graph Isomorphism Network)(2019):How Powerful are Graph Neural Networks? | OpenReview

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值