已知图包含结点(Node)和边(Edge),如何用卷积的方法将节点嵌入到特征空间?
思路1:将卷积的概念推广到图——空间近邻的卷积;
思路2:应用数据处理的傅里叶域(Fourier Domain)等概念,基于光谱的方法。
这其中,GAT和GCN是常用的网络图神经网络模型。
接下来,介绍图的聚合(Aggregate)的定义:在图神经网络中,聚合操作用于节点特征的更新,例如下图通过邻居节点的特征来更新当前节点的特征,最终Readout从节点的特征表示中提取出图的全局特征。
归纳几篇图神经网络的方法:
NN4G(Neural network for Graphs)(2009):Neural Network for Graphs: A Contextual Constructive Approach | IEEE Journals & Magazine | IEEE Xplore
DCNN(Diffusion-Convolutional Neural Networks)(2015):https://arxiv.org/abs/1511.02136
MoNET(Mixture Model Networks)(2016):https://arxiv.org/pdf/1611.08402
GraphSAGE(2018):https://arxiv.org/pdf/1706.02216
GAT(Graph Attention Networks)(2018):https://arxiv.org/pdf/1710.10903.pdf
GIN(Graph Isomorphism Network)(2019):How Powerful are Graph Neural Networks? | OpenReview