模拟用户弧线滑动,算法python实现

本文介绍了如何通过Python和SikuliX实现模拟用户弧线滑动的算法,详细阐述了如何求出圆心坐标和弧线上采样点的坐标,以及在不同情况下如何调整计算公式。最后展示了实现的弧线滑动效果。
摘要由CSDN通过智能技术生成

前言

用自动化软件执行脚本时,其中拖拽、滑动等这些操作往往是直线,而实际用户滑动时一般都不是直线,可能是一段弧线或者更复杂的线。

下面就介绍一种计算两个点直线弧线路径的方法,并通过 python 和 sikuli 实现弧线滑动

弧线坐标计算

已知 A、B两点坐标分别为(x1,y1)、(x2,y2),求经过A、B两点的弧线,显然这样的弧线有无数条,需要再加上限定条件,弧线的弧度φ,也就是A、B两点和圆心连线的夹角,范围是(0, π),限定弧度后,这样的弧线就只剩两条了。

1. 求出圆心坐标

如图,先考虑B在A右上方,弧线位于AB下方的情况:
这里写图片描述
一开始想用圆心坐标列二元二次方程组,比较麻烦,就改用三角函数来运算,效果很好。主要思路就是求出其中一条半径 OA的长度和斜率,再通过 A 点坐标增量的方式求出圆心 O 的坐标

AB的长度 d = ((x2-x1)^2 + (y2-y1)^2) ^(1/2)
OA与AB的夹角 α= (π - φ)/2
根据正弦定理求半径 r = d/sinα* sinφ
AB与x轴的夹角 β= arctan((y2-y1)/(x2-x1))
OA与x轴的夹角 γ=α+β
最后O点坐标为 (x0, y0) = (x1+r*cosinγ, y1+r*sinγ)

其他情况处理:
图中各条线的相对位置只是一种情况,其他情况计算公式可能稍有不同,某些地

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值