线性代数-第四章 线性方程组
线性方程组的表示法
- 系数矩阵和增广矩阵
-
当常数项 b 1 , b 2 , … , b m b_1,b_2,\dots,b_m b1,b2,…,bm 不全为零时,称方程组为非齐次线性方程组,表示为 A x = b Ax=b Ax=b
当 b 1 , b 2 , … , b m b_1,b_2,\dots,b_m b1,b2,…,bm 全为零时,称方程组为齐次线性方程组,表示为 A x = 0 Ax=0 Ax=0
-
向量形式
- 将系数矩阵
A
A
A 按列分块,即
A
=
(
α
1
,
α
2
,
…
,
α
n
)
A=(\alpha_1,\alpha_2,\dots,\alpha_n)
A=(α1,α2,…,αn),分局向量的线性运算,则非齐次线性方程组可以表示为向量的形式:
x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b x1α1+x2α2+⋯+xnαn=b
齐次线性方程组的向量形式:
x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 x1α1+x2α2+⋯+xnαn=0
其中, α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 为系数矩阵 A A A 的列向量组
- 将系数矩阵
A
A
A 按列分块,即
A
=
(
α
1
,
α
2
,
…
,
α
n
)
A=(\alpha_1,\alpha_2,\dots,\alpha_n)
A=(α1,α2,…,αn),分局向量的线性运算,则非齐次线性方程组可以表示为向量的形式:
骚题一道:
线性方程组的判定
-
首先明确下面可能要用到的两个变量, n n n 表示方程组中未知量的个数, m m m 表示方程的个数
-
线性方程组的下列三种变换,称为线性方程组的初等变换:
- 交换两个方程的位置
- 在方程的两端乘以数 k ≠ 0 k\not=0 k=0
- 某方程两端 l l l 倍后加到另一个方程上
这三种也就是对应了对于矩阵的初等行变换,也就说明了在解方程时只对 A ‾ , A \overline{A},A A,A,做初等行变换
-
方程组解的判定(注⭐⭐⭐:没说是齐次的还是非齐次的,所以对二者都成立,但有一点不同,下面会说明)
-
方程组无解:对系数矩阵和增广矩阵做初等行变换(⭐⭐⭐其实只需要对增广矩阵做初等行变换,因为化简为阶梯形之后其中就包含了系数矩阵的阶梯形,两个矩阵的秩就可以直接观察得到),如果发现 r ( A ) ≠ r ( A ‾ ) r(A)\not=r(\overline{A}) r(A)=r(A),则说明该方程组无解
e . g . e.g. e.g.
-
方程组有解:
- 有唯一解:将增广矩阵化为阶梯形,发现 r ( A ) = r ( A ‾ ) = n r(A)=r(\overline{A})=n r(A)=r(A)=n,(其中 n n n 为方程组中未知量的个数),则方程组有唯一解
- 有无穷多解:将增广矩阵化为阶梯形,发现 r ( A ) = r ( A ‾ ) < n r(A)=r(\overline{A})<n r(A)=r(A)<n,则方程组有无穷多解
-
-
齐次线性方程组解的判定:
- A x = 0 Ax=0 Ax=0 有非零解 ⟺ \iff ⟺ 向量组 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,…,an 线性相关 ⟺ \iff ⟺ r ( a 1 , a 2 , … , a n ) < n r(a_1,a_2,\dots,a_n)<n r(a1,a2,…,an)<n ⟺ \iff ⟺ r ( A ) < n r(A)<n r(A)<n,在这里就说明齐次线性方程组一定有解(零解,但我们一般不说零解,因为所有未知量取零就是一个解),所以对于齐次线性方程组一定有 r ( A ) = r ( A ‾ ) r(A)=r(\overline{A}) r(A)=r(A),所以我们一般直接说 r ( A ) < n r(A)<n r(A)<n
- A x = 0 Ax=0 Ax=0 有零解 ⟺ \iff ⟺ 向量组 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,…,an 线性无关 ⟺ \iff ⟺ r ( a 1 , a 2 , … , a n ) = n r(a_1,a_2,\dots,a_n)=n r(a1,a2,…,an)=n ⟺ \iff ⟺ r ( A ) = n r(A)=n r(A)=n
- 对齐次线性方程组只对系数矩阵 A A A 做初等行变换
- 对于齐次线性方程组 A x = 0 Ax=0 Ax=0,如果方程个数 ( m ) (m) (m) 小于未知数个数 ( n ) (n) (n),则 A x = 0 Ax=0 Ax=0 必有非零解,因为 r ( A ) ≤ m i n ( m , n ) = m < n r(A)\leq min(m,n)=m<n r(A)≤min(m,n)=m<n
- 对于齐次线性方程组 A x = 0 Ax=0 Ax=0,如果方程个数 ( m ) (m) (m) 等于未知数个数 ( n ) (n) (n)(即系数矩阵 A A A 为方阵),则 A x = 0 Ax=0 Ax=0 有非零解 ⟺ ∣ A ∣ = 0 \iff |A|=0 ⟺∣A∣=0; A x = 0 Ax=0 Ax=0 只有零解 ⟺ ∣ A ∣ ≠ 0 \iff |A|\not=0 ⟺∣A∣=0
线性方程组解的性质
-
齐次线性方程组解的性质
-
若 ϵ 1 , ϵ 2 \epsilon_1,\epsilon_2 ϵ1,ϵ2 是齐次线性方程组 A x = 0 Ax=0 Ax=0 的两个解,则 ϵ 1 + ϵ 2 \epsilon_1+\epsilon_2 ϵ1+ϵ2 也是 A x = 0 Ax=0 Ax=0 的解
-
若 ϵ \epsilon ϵ 是齐次线性方程组 A x = 0 Ax=0 Ax=0 的解,则对任意常数 k k k, k ϵ k\epsilon kϵ 也是 A x = 0 Ax=0 Ax=0 的解
-
若 ϵ 1 , ϵ 2 , … , ϵ s \epsilon_1,\epsilon_2,\dots,\epsilon_s ϵ1,ϵ2,…,ϵs 是齐次线性方程组 A x = 0 Ax=0 Ax=0 的解,则他们的线性组合
c 1 ϵ 1 + c 2 ϵ 2 + ⋯ + c s ϵ s , ( c 1 , c 2 , … , c s 为任意常数 ) c_1\epsilon_1+c_2\epsilon_2+\dots+c_s\epsilon_s,(c_1,c_2,\dots,c_s为任意常数) c1ϵ1+c2ϵ2+⋯+csϵs,(c1,c2,…,cs为任意常数)
也是 A x = 0 Ax=0 Ax=0 的解
-
-
非齐次线性方程组解的性质
非齐次线性方程组 A x = b Ax=b Ax=b 与其导出组 A x = 0 Ax=0 Ax=0 的解具有以下性质:
- 设 η 1 , η 2 \eta_1,\eta_2 η1,η2 为非齐次线性方程组 A x = b Ax=b Ax=b 的任意两个解,则 η 1 − η 2 \eta_1-\eta_2 η1−η2 为对应导出组 A x = 0 Ax=0 Ax=0 的解
- 设 η \eta η 为非齐次线性方程组 A x = b Ax=b Ax=b 的解, ϵ \epsilon ϵ 是其导出组 A x = 0 Ax=0 Ax=0 的任意解,则 ϵ + η \epsilon+\eta ϵ+η 是 A x = b Ax=b Ax=b 的解
- 若 η ∗ \eta^* η∗ 为 A x = b Ax=b Ax=b 的一个解,则 A x = b Ax=b Ax=b 的任一解可表示为 ϵ + η ∗ \epsilon+\eta^* ϵ+η∗,其中 ϵ \epsilon ϵ 是其导出组 A x = 0 Ax=0 Ax=0 的解
齐次线性方程组的基础解系
-
设 ϵ 1 , ϵ 2 , … , ϵ s \epsilon_1,\epsilon_2,\dots,\epsilon_s ϵ1,ϵ2,…,ϵs 是齐次线性方程组 A x = 0 Ax=0 Ax=0 的解向量,如果:
- ϵ 1 , ϵ 2 , … , ϵ s \epsilon_1,\epsilon_2,\dots,\epsilon_s ϵ1,ϵ2,…,ϵs 线性无关
- 方程组 A x = 0 Ax=0 Ax=0 的任一解向量都可以由 ϵ 1 , ϵ 2 , … , ϵ s \epsilon_1,\epsilon_2,\dots,\epsilon_s ϵ1,ϵ2,…,ϵs 线性表示
则称 ϵ 1 , ϵ 2 , … , ϵ s \epsilon_1,\epsilon_2,\dots,\epsilon_s ϵ1,ϵ2,…,ϵs 是齐次线性方程组 A x = 0 Ax=0 Ax=0 的一个基础解析(可以类比极大线性无关组,其实齐次线性方程组的基础解系就是它的所有解的极大线性无关组)
求基础解析的标准解法:
⭐⭐⭐⭐⭐要注意的点:一定要将系数矩阵化为行简化阶梯形
-
对于 n n n 元齐次线性方程组 A x = 0 Ax=0 Ax=0 若 r ( A ) = r < n r(A)=r<n r(A)=r<n,则 A x = 0 Ax=0 Ax=0 一定存在基础解系,且基础解系中含有 n − r n-r n−r 个解向量。
-
基础解系的判定
骚题一道:
注意:这里我们一般用下面的解法,这样解的目的是为了证明四个向量线性无关,因为基础解系已经线性无关,再右乘一个可逆矩阵,矩阵的秩不变,所以问题转化为求矩阵的行列式
- 因此基础解系具备极大线性无关组的性质和结论:
- 当 A x = 0 Ax=0 Ax=0 有非零解时,基础解系存在
- 若 A x = 0 Ax=0 Ax=0 的基础解系存在,则基础解系不唯一
- A x = 0 Ax=0 Ax=0 的不同基础解系之间可以相互线性表示
- A x = 0 Ax=0 Ax=0 的不同基础解系中所含向量的个数相等,均为 n − r ( A ) n-r(A) n−r(A)。(其中 n n n 为未知量的个数)
- A x = 0 Ax=0 Ax=0 的任意 n − r ( A ) n-r(A) n−r(A) 个线性无关的解向量都是它的基础解系。(其中 n n n 为未知量的个数)
- 若 ϵ 1 , ϵ 2 , … , ϵ s \epsilon_1,\epsilon_2,\dots,\epsilon_s ϵ1,ϵ2,…,ϵs 是 A x = 0 Ax=0 Ax=0 的一个基础解析,则 A x = 0 Ax=0 Ax=0 的任一解都可用 ϵ 1 , ϵ 2 , … , ϵ s \epsilon_1,\epsilon_2,\dots,\epsilon_s ϵ1,ϵ2,…,ϵs 线性表示
线性方程组解的结构
- 齐次线性方程组解的结构:
骚题两道:
-
非齐次线性方程组解的结构:(这里重点研究当 r ( A ) = r ( A ‾ ) < n r(A)=r(\overline{A})<n r(A)=r(A)<n 时,无穷多解的情况)
- 对于
n
n
n 元非齐次线性方程组
A
x
=
b
Ax=b
Ax=b,若
r
(
A
)
=
r
(
A
‾
)
=
r
<
n
r(A)=r(\overline{A})=r<n
r(A)=r(A)=r<n,如果
a
0
a_0
a0 是
A
x
=
b
Ax=b
Ax=b 的一个解(通常称为特解),
ϵ
1
,
ϵ
2
,
…
,
ϵ
n
−
r
\epsilon_1,\epsilon_2,\dots,\epsilon_{n-r}
ϵ1,ϵ2,…,ϵn−r 为其导出组
A
x
=
0
Ax=0
Ax=0 的一个基础解系,则方程组
A
x
=
b
Ax=b
Ax=b 的通解可表示为
x = a 0 + c 1 ϵ 1 + c 2 ϵ 2 + ⋯ + c n − r ϵ n − r x=a_0+c_1\epsilon_1+c_2\epsilon_2+\dots+c_{n-r}\epsilon_{n-r} x=a0+c1ϵ1+c2ϵ2+⋯+cn−rϵn−r
其中 c 1 , c 2 , … , c n − r c_1,c_2,\dots,c_{n-r} c1,c2,…,cn−r 为任意常数
- 对于
n
n
n 元非齐次线性方程组
A
x
=
b
Ax=b
Ax=b,若
r
(
A
)
=
r
(
A
‾
)
=
r
<
n
r(A)=r(\overline{A})=r<n
r(A)=r(A)=r<n,如果
a
0
a_0
a0 是
A
x
=
b
Ax=b
Ax=b 的一个解(通常称为特解),
ϵ
1
,
ϵ
2
,
…
,
ϵ
n
−
r
\epsilon_1,\epsilon_2,\dots,\epsilon_{n-r}
ϵ1,ϵ2,…,ϵn−r 为其导出组
A
x
=
0
Ax=0
Ax=0 的一个基础解系,则方程组
A
x
=
b
Ax=b
Ax=b 的通解可表示为
线性方程组的求解
- 齐次线性方程组的求解
- 非齐次线性方程组的求解
求解非齐次线性方程组解的标准解法: