线性代数-第六章 二次型
二次型及矩阵表示
-
二次型的定义:含有 n n n 个变量 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn 的二次齐次多项式
f ( x 1 , x 2 , ⋯ , x n ) = a 11 x 1 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + ⋯ + 2 a 1 n x 1 x n + a 22 x 2 2 + 2 a 23 x 2 x 3 + ⋯ + 2 a 2 n x 2 x n + ⋯ ⋯ ⋯ ⋯ + a n n x n 2 f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+2a_{12}x_1x_2+2a_{13}x_1x_3+\cdots+2a_{1n}x_1x_n\\ +a_{22}x_2^2+2a_{23}x_2x_3+\cdots+2a_{2n}x_2x_n\\ +\cdots\cdots\cdots\cdots\\ +a_{nn}x_n^2 f(x1,x2,⋯,xn)=a11x12+2a12x1x2+2a13x1x3+⋯+2a1nx1xn+a22x22+2a23x2x3+⋯+2a2nx2xn+⋯⋯⋯⋯+annxn2
也就是要么是一个系数乘以平方项,要么是一个系数乘以交叉项称为 n n n 元二次型,简称二次型,当 a i j ( i , j = 1 , 2 , ⋯ , n ) a_{ij}(i,j=1,2,\cdots,n) aij(i,j=1,2,⋯,n) 为实数时,称 f f f 为 n n n 元实二次型
-
二次型的矩阵和二次型的秩
可用矩阵写为: f ( x 1 , x 2 , ⋯ , x n ) = x T A x f(x_1,x_2,\cdots,x_n)=x^TAx f(x1,x2,⋯,xn)=xTAx ,这里的矩阵 A A A 要求必须是实对称矩阵,也就是 A T = A A^T=A AT=A
- 二次型的秩就是矩阵 A A A 的秩,即 r ( f ) = r ( A ) r(f)=r(A) r(f)=r(A)
-
根据二次齐次多项式写出矩阵 A A A
- 平方项的系数直接写在主对角线上
- 交叉项的系数要除以 2 ,并写到对应的两个位置,关于主对角线对称
例:
-
根据矩阵 A A A 写二次型,就是将上两步反过来
- 主对角线的系数直接做平方项的系数
- 取主对角线上方(或下方)的元素乘以 2 ,作为交叉项系数
骚题一道:这里的中间的矩阵 A A A 看似不是实对称矩阵,但是我们可以将它化为对称矩阵,主对角线的元素不变,关于主对角线对称的两个位置相加除以 2 ,再写回去
-
二次型的标准形:如果二次型只含平方项 x i 2 x_i^2 xi2,不含交叉项 x i x j ( i ≠ j ) x_ix_j(i\not=j) xixj(i=j),即形式为:
f ( x 1 , x 2 , ⋯ , x n ) = d 1 x 1 2 + d 2 x 2 2 + ⋯ + d n x n 2 f(x_1,x_2,\cdots,x_n)=d_1x_1^2+d_2x_2^2+\cdots+d_nx_n^2 f(x1,x2,⋯,xn)=d1x12+d2x22+⋯+dnxn2
称为二次型的一个标准形,其中系数 d 1 , d 2 , ⋯ , d n d_1,d_2,\cdots,d_n d1,d2,⋯,dn 为任意实数 -
二次型的标准形对应的矩阵式对角形矩阵
二次型的秩等于标准形种非零系数平方项的个数
-
二次型的规范形:如果标准形的系数 d i d_i di 只能是 1 , − 1 , 0 1,-1,0 1,−1,0 三个数,则称为二次型的规范形,即
z 1 2 + ⋯ + z p 2 − z p + 1 2 − ⋯ − z r 2 z_1^2+\cdots+z_p^2-z_{p+1}^2-\cdots-z_r^2 z12+⋯+zp2−zp+12−⋯−zr2
其中, r = r ( A ) , p ≤ r ≤ n r=r(A),p\leq r\leq n r=r(A),p≤r≤n注: x x x 的顺序必须是从小到大,系数的顺序必须是 1 , − 1 , 0 1,-1,0 1,−1,0 的顺序,例如, x 2 2 + x 3 2 − x 1 2 , x 1 2 + x 3 2 x_2^2+x_3^2-x_1^2~,~x_1^2+x_3^2 x22+x32−x12 , x12+x32 都不是规范形
但是 x 1 2 + x 2 2 + x 3 2 , − x 1 2 − x 2 2 x_1^2+x_2^2+x_3^2~,~-x_1^2-x_2^2 x12+x22+x32 , −x12−x22 是规范形,也就是有些系数可以没有,但如果有,必须是 1 , − 1 , 0 1,-1,0 1,−1,0 的顺序
-
二次型的惯性指数和符号差:
- 定义:再标准形中,正系数平方项的个数 p p p 称为二次型的正惯性指数,负系数平方项的个数 q q q 称为二次型的负惯性指数,正惯性指数与负惯性指数的差 p − q p-q p−q 称为二次型的符号差
- 性质:二次型的秩等于正惯性指数与负惯性指数的和,即 r = p + q r=p+q r=p+q
-
二次型的线性变换:
-
定义:
-
若 ∣ C ∣ ≠ 0 |C|\not=0 ∣C∣=0 ,则称为可逆线性变换(或满秩、非退化、非奇异), y = C − 1 x y=C^{-1}x y=C−1x 是变量 y 1 , y 2 ⋯ , y n y_1,y_2\cdots,y_n y1,y2⋯,yn 到 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn 的一个线性变换,并称为逆线性变换,简称逆变换
若 C C C 为正交矩阵,则称线性变换 x = C y x=Cy x=Cy 为正交线性变换,简称正交变换
-
定义:
-
定理:线性变换乘积的矩阵等于各线性变换矩阵的乘积,且可逆线性变换的乘积仍是可逆线性变换
-
定理:二次型经过可逆线性变换,得到的仍是二次型,且秩不变
证明:
-
合同矩阵与合同变换
- 定义:设
A
A
A 和
B
B
B 是
n
n
n 阶矩阵,如果存在可逆矩阵
C
C
C,使得
C T A C = B C^TAC=B CTAC=B
则称矩阵 A A A 与 B B B 合同,记为 A ≃ B A\simeq B A≃B,并称由 A A A 到 B B B 的变换为合同变换, C C C 称为合同变换的矩阵
总结一个矩阵的四种关系:
- 性质:
- 反身性:对于任意一个矩阵 A A A,都有 A ≃ A A\simeq A A≃A
- 对称性:若 A ≃ B A\simeq B A≃B,则 B ≃ A B\simeq A B≃A
- 传递性:若 A ≃ B , B ≃ C A\simeq B,B\simeq C A≃B,B≃C 则 A ≃ C A\simeq C A≃C
- 若 A ≃ B A\simeq B A≃B,则 r ( A ) = r ( B ) , A ≅ B r(A)=r(B),A\cong B r(A)=r(B),A≅B
- 若 A ≃ B A\simeq B A≃B,则 A T = A A^T=A AT=A 的充要条件是 B T = B B^T=B BT=B
- 若 A ≃ B A\simeq B A≃B,则 A , B A,B A,B 的可逆性相同;当 A , B A,B A,B 都可逆时, A − 1 ≃ B − 1 A^{-1}\simeq B^{-1} A−1≃B−1
- 若 A ≃ B A\simeq B A≃B,则 A T ≃ B T A^T\simeq B^T AT≃BT
- 定义:设
A
A
A 和
B
B
B 是
n
n
n 阶矩阵,如果存在可逆矩阵
C
C
C,使得
-
有关二次型的两个重要结论:
- 若二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx 经可逆线性变换 x = C y x=Cy x=Cy 化为二次型 y T B y y^TBy yTBy,其中 B = C T A C B=C^TAC B=CTAC,则 A A A 与 B B B 合同
- 若二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx 经正交变换 x = Q y x=Qy x=Qy 化为二次型 y T B y y^TBy yTBy,其中 B = Q T A Q = Q − 1 A Q B=Q^TAQ=Q^{-1}AQ B=QTAQ=Q−1AQ,则 A A A 与 B B B 合同,且相似
化二次型为标准形
-
配方法:
-
定理:任何一个 n n n 阶实对称矩阵 A A A,都合同于一个对角形矩阵
-
正交替换法:正交变换法化二次型为标准形,本质上就是实对称矩阵的正交相似对角化
- 定理:任何一个 n n n 元实二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx ( A A A 为实对称矩阵)都可以通过正交变换 x = Q y x=Qy x=Qy ( Q Q Q 为正交矩阵)化为标准形 λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 \lambda_1y_1^2+\lambda_2y_2^2+\dots+\lambda_ny_n^2 λ1y12+λ2y22+⋯+λnyn2,其中 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,⋯,λn 为矩阵 A A A 的 n n n 个特征值
-
定理:
-
推论:若实对称矩阵 A A A 与 B B B 相似,则 A A A 与 B B B 合同
骚题一道:
二次型和对称矩阵的有定性
-
二次型和对称矩阵有定性的概念:
- 定义:设 n n n 元二次型 f ( x ) = x T A x ( A T = A ) f(x)=x^TAx(A^T=A) f(x)=xTAx(AT=A),如果对于任意非零列向量 x = ( x 1 , x 2 , ⋯ , x n ) T ≠ 0 x=(x_1,x_2,\cdots,x_n)^T\not=0 x=(x1,x2,⋯,xn)T=0,恒有 f ( x ) = x T A x > 0 ( 或 < 0 ) f(x)=x^TAx>0(或<0) f(x)=xTAx>0(或<0),则称二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx 为正(负)定性二次型,称对称矩阵 A A A 为正(负)定矩阵
- 如果对于任意列向量 x = ( x 1 , x 2 , ⋯ , x n ) T x=(x_1,x_2,\cdots,x_n)^T x=(x1,x2,⋯,xn)T,恒有 f ( x ) = x T A x ≥ 0 ( 或 ≤ 0 ) f(x)=x^TAx\geq0(或\leq0) f(x)=xTAx≥0(或≤0),且存在非零列向量 x 0 = ( x 1 0 , x 2 0 , ⋯ , x n 0 ) T x_0=(x_1^0,x_2^0,\cdots,x_n^0)^T x0=(x10,x20,⋯,xn0)T,使得 f ( x 0 ) = x 0 T A x 0 = 0 f(x_0)=x_0^TAx_0=0 f(x0)=x0TAx0=0,则称二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx 为半正(负)定性二次型,称对称矩阵 A A A 为半正(负)定矩阵
- 二次型或对称矩阵的正(负)定、半正(负)定,统称为二次型或对称矩阵的有定性,不具有定性的二次型或对称矩阵称为不定的
-
正定二次型和正定矩阵的判别:
-
定理:正定二次型经过任一可逆线性变换仍化为正定二次型
-
推论:可逆线性变换不改变二次型的定性
-
推论:若 A A A 与 B B B 是两个合同的实对称矩阵,则 A A A 与 B B B 有相同的定性
-
定理: n n n 元二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx 正定的充分必要条件是它的标准形为 d 1 y 1 2 + d 2 y 2 2 + ⋯ + d n y n 2 d_1y_1^2+d_2y_2^2+\cdots+d_ny_n^2 d1y12+d2y22+⋯+dnyn2,其中 d i > 0 , i = 1 , 2 , ⋯ , n d_i>0,i=1,2,\cdots,n di>0,i=1,2,⋯,n (标准形法)
-
推论: n n n 元二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx 正定的充分必要条件是它的正惯性指数为 n n n (惯性指数法)
-
结论1: n n n 元二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx 正定的充分必要条件是它的规范形为 y 1 2 + y 2 2 + ⋯ + y n 2 y_1^2+y_2^2+\cdots+y_n^2 y12+y22+⋯+yn2 (规范形法)
-
结论2: n n n 阶对称矩阵 A A A 正定的充分必要条件是 A ≃ E A\simeq E A≃E,即存在可逆矩阵 C C C,使得 C T A C = E C^TAC=E CTAC=E (与 E E E 合同法)
-
结论3: n n n 阶对称矩阵 A A A 正定的充分必要条件是存在可逆矩阵 C C C,使得 A = C T C A=C^TC A=CTC (矩阵分解法)
-
推论:若对称矩阵 A A A 正定,则 ∣ A ∣ > 0 |A|>0 ∣A∣>0 (正定的必要条件)
-
定理: n n n 阶对称矩阵 A A A 正定的充分必要条件是 A A A 的特征值全大于0
-
定理: n n n 阶对称矩阵 A A A 正定的充分必要条件是 A A A 的各阶顺序主子式全大于零 (顺序主子式法)
顺序主子式:从矩阵的左上角依次取 1 阶,2 阶,……,n 阶方阵,就为 1 阶顺序主子式,2 阶顺序主子式,……,n 阶顺序主子式
-
-
正定矩阵的一些性质:
-
若 A A A 为正定矩阵,则 A A A 必为对称矩阵 (正定的必要条件)
-
若 A A A 为正定矩阵,则 A A A 的主对角线元素都大于零,即 a i i > 0 , i = 1 , 2 , ⋯ , n a_{ii}>0,i=1,2,\cdots,n aii>0,i=1,2,⋯,n
-
若 A A A 为正定矩阵,则 A A A 为可逆矩阵 (正定的必要条件)
-
若 A A A 为正定矩阵,则 A T , A − 1 , A ∗ , k A ( k > 0 ) , A k ( k 是正整数 ) A^T,A^{-1},A^*,kA(k>0),A^k(k是正整数) AT,A−1,A∗,kA(k>0),Ak(k是正整数) 均为正定矩阵
-
若 A A A 为正定矩阵, B B B 是同阶正定(或半正定)矩阵,则 A + B A+B A+B 也是正定矩阵
证明:
-