线性代数-第一章 行列式
1.1二阶三阶行列式
-
二阶行列式的计算比较简单:主对角线相乘,减去副对角线相乘
-
三阶行列式的计算,图形化的方法:每条红色对角线元素相乘再相加,减去每条蓝色对角线元素相乘在相减
- 上三角、下三角、对角形行列式的计算是主对角元素相乘
1.2排列与逆序
-
n级排列:1、2、……、n组成的一个有序的数组
-
标准排列(自然排列):1234……n
-
逆序:在一个n级排列中 i 1 i 2 i 3 … i n i_1i_2i_3 \dots i_n i1i2i3…in ,如果一个较大的数 i s i_s is 排在较小的数 i t i_t it 的前面,则称 i s i_s is 与 i t i_t it 构成了一个逆序
-
逆序数:排列 i 1 i 2 i 3 … i n i_1i_2i_3 \dots i_n i1i2i3…in 中逆序的个数称为它的逆序数,记作 N ( i 1 i 2 i 3 … i n ) N(i_1i_2i_3 \dots i_n) N(i1i2i3…in).
e . g . e.g. e.g.
N ( 54123 ) = 4 + 3 + 0 = 7 N(54123) = 4+3+0=7 N(54123)=4+3+0=7
- 逆序数为奇(偶)数的排列称为奇(偶)排列
所以n级标准排列是偶排列
-
对换:在一个n级排列中,互换某两个数码的位置,其余数码不变,可以得到另一个排列,这样的一个变换称为一个对换。
-
一个对换经过一次对换后,奇偶性改变
e . g . e.g. e.g.
证明不做要求,可以自己取几个数看看,取相邻的两个数交换或者中间有其他数的情况
n级排列共有n!个,其中奇排列和偶排列各占一半,各位 n ! 2 ( n > = 2 ) \frac{n!}{2}(n>=2) 2n!(n>=2)
n阶行列式的定义
n阶行列式的按行展开的定义:
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
⋯
a
n
n
]
=
∑
j
1
j
2
…
j
n
(
−
1
)
N
(
j
1
j
2
…
j
n
)
a
1
j
1
a
2
j
2
…
a
n
j
n
\begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{bmatrix} = \sum_{j_1j_2 \dots j_n}(-1)^{N(j_1j_2 \dots j_n)}a_{1j_1}a_{2j_2} \dots a_{nj_n}
a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann
=j1j2…jn∑(−1)N(j1j2…jn)a1j1a2j2…anjn
其中
j
1
j
2
…
j
n
j_1j_2 \dots j_n
j1j2…jn表示一种列标的排列
- 行标取标准排列
- 列表取排列的所有可能
- 符号由列表排列的逆序数奇偶决定
- 不同行不同列取出n个元素相乘
注:这是最基础的定义,在计算高阶行列式时其中的大量元素可能为0,就省去了大量的计算。
n阶行列式的按列展开的定义:
也就是将行列的元素互换
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
⋯
a
n
n
]
=
∑
i
1
i
2
…
i
n
(
−
1
)
N
(
i
1
i
2
…
i
n
)
a
i
1
1
a
i
2
2
…
a
i
n
n
\begin{bmatrix}{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\{\vdots}&{\vdots}&{\ddots}&{\vdots}\\{a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\\end{bmatrix} = \sum_{i_1i_2 \dots i_n}(-1)^{N(i_1i_2 \dots i_n)}a_{i_1 1}a_{i_2 2} \dots a_{i_n n}
a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann
=i1i2…in∑(−1)N(i1i2…in)ai11ai22…ainn
其中
i
1
i
2
…
i
n
i_1i_2 \dots i_n
i1i2…in表示一种行标的排列
- 列标取标准排列
- 行表取排列的所有可能
- 符号由行表排列的逆序数奇偶决定
- 不同行不同列取出n个元素相乘
n阶行列式的随机展开的定义:
也就是行列全部取排列的所有可能
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
⋯
a
n
n
]
=
∑
i
1
i
2
…
i
n
(
−
1
)
N
(
i
1
i
2
…
i
n
)
+
N
(
j
1
j
2
…
j
n
)
a
i
1
j
1
a
i
2
j
2
…
a
i
n
j
n
\begin{bmatrix}{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\{\vdots}&{\vdots}&{\ddots}&{\vdots}\\{a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\\end{bmatrix} = \sum_{i_1i_2 \dots i_n}(-1)^{N(i_1i_2 \dots i_n)+N(j_1j_2 \dots j_n)}a_{i_1 j_1}a_{i_2 j_2} \dots a_{i_n j_n}
a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann
=i1i2…in∑(−1)N(i1i2…in)+N(j1j2…jn)ai1j1ai2j2…ainjn
注:这里出题的时候常考符号的计算,后面的计算比较复杂。
特殊的行列式:
- 行列式的某行(或某列)元素全为0,则次行列式值为0
- 三角行列式(上三角形行列式、下三角行列式、对角形行列式)等于主对角上元素的乘积,这里的符号都是整数所以不用考虑
- 副对角行列式等于副对角上的元素的乘积,乘以符号,这里是需要考虑符号的,而且符号的正负不确定
e . g . e.g. e.g.
行列式的性质
- 转置
行列式求转置,值不变:按行展开 = 转置后的安列展开
-
交换行列式的两行,行列式变号:取得数不变,但是求符号的逆序数是做了一次对换,所有奇偶性改变
-
如行列式中的两行(两列)的元素相等,则行列式值为零:可用上面的性质证明,若两行相等,则交换相等的两行之后有 D = − D D = -D D=−D 则 D = 0 D = 0 D=0
-
用数 k 取乘行列式的某一行(列)的所有元素,等于用数 k 去乘行列式(比较简单,就不做证明了)
-
若行列式有两行(列)的元素对应成比例,则行列式的值为零:将成立比例的公因子提出去,则两行(列)的元素相等
盘点一下:
- 行列式中某一行(列)为0,行列式为0
- 行列式中某两行(列)相等,行列式为0
- 行列式中某两行(列)成比例,行列式为0
注:反过来不成立
- 某个行列式的某一行(列)的各元素是两个数的和,则可用分为两个行列式的和,将该行(列)的元素分到两个行列式中,其余的不变
献上一道坑题:
- 将行列式某一行(列)的所有元素乘以同一个数 k 后加到另一行(列)对应位置的元素上,则行列式的值不变:将该行列式分为两个行列式的和,发现乘数 k 的行列式为0
注:思考 k 的值为-1、0、1
-
反对称行列式,当 n 为奇数时行列式为0
反对称行列式: a i j = − a j i a_{ij} = -a_{ji} aij=−aji
行列式按某一行(列)展开
-
余子式:将行列式中的某一元素所在的行列的所用元素去掉,剩下的构成一个 n-1 阶的行列式,称为元素 a i j a_{ij} aij 的余子式,记作 M i j M_{ij} Mij
-
代数余子式:在余子式的基础上 ( − 1 ) i + j M i j (-1)^{i+j}M_{ij} (−1)i+jMij 称为元素 a i j a_{ij} aij 的代数余子式,记作 A i j A_{ij} Aij
-
n 阶行列式等于它的任意一行(列)的个元素与其对应的代数余子式乘积的和(利用该方法可将高阶行列式转化为低阶行列式来计算)
注:先用性质尽可能多化 0 ,然后再按 0 多的行列展开
-
异乘变零定理:行列式中某一行(列)的所用元素与零一行(列)的所用元素的代数余子式的乘积的和为零
牛题一道:
这里的技巧就是不直接去算每个代数余子式,将最后一行替换,然后去计算该行列式的值
若题目中求得是余子式的和,那就转化为代数余子式的和,再去计算:
行列式按多行(列)展开
- 在 n 阶行列式 D 中,任意选取 k 行 k 列( 1 ≤ k ≤ n 1≤k≤n 1≤k≤n),位于交叉点处的 k 2 k^2 k2 个元素,构成一个 k 阶行列式 N,称 N 为 D 的一个 k 阶子式
- 在行列式 D 中划去 k 阶子式 N 所在的行和列后剩余的元素构成一个 n − k n-k n−k 阶行列式 M,称 M为 N 的余子式
- A = ( − 1 ) ( i 1 + i 2 + ⋯ + i k ) + ( j 1 + j 2 + ⋯ + j k ) M A = (-1)^{(i_1+i_2 + \dots +i_k)+(j_1+j_2+ \dots +j_k)}M A=(−1)(i1+i2+⋯+ik)+(j1+j2+⋯+jk)M, 称 A 为 N 的代数余子式
- 拉普拉斯定理:在 n 阶行列式 D 中,任意取定 k 行(列) ( 1 ≤ k ≤ n − 1 ) (1≤k≤n-1) (1≤k≤n−1),则由这 k 行(列)元素所组成的 k 阶子式 N 1 , N 2 , … , N t ( t = C n k ) N_1,N_2, \dots ,N_t (t = C_n^k) N1,N2,…,Nt(t=Cnk)与它们对应的代数余子式 A 1 , A 2 , … , A t A_1,A_2, \dots ,A_t A1,A2,…,At乘积之和等于行列式 D ,即
D = N 1 A 1 + N 2 A 2 + ⋯ + N t A t D=N_1A_1+N_2A_2+ \dots +N_tA_t D=N1A1+N2A2+⋯+NtAt
这就是按多行展开
注:这里出题时行列式中可能有多个零,所以不为零的余子式就变少了
骚题两道:
- 六个结论:
其中:A是 m 阶,B 是 n 阶,前三个简单写一下就可以知道
后三个看宋浩老师小证一下:
其中有 2 × ( 1 + 2 + ⋯ + m ) 2×(1+2+ \dots +m) 2×(1+2+⋯+m)是偶的,所以不用管,然后有 m × n m×n m×n,所以次数是 m × n m×n m×n
注:证明可以不用管,可以直接记结论
行列式的计算
按照之前的,有多种计算行列式的方法:
-
按照定义去求
-
化为三角形行列式
-
化处多个0,然后按这行(列)展开
-
化为低阶行列式计算
等等
有许多特殊的行列式,有各自特殊的计算方法: -
爪形行列式:
计算方法是化为上三角行列式,即用第二列开始的每一列去消掉第一列的 1,就化为了一个上三角形行列式
骚题一道:
计算方法是,用第一行去消下面每一行中的 1,然后就会化为爪形行列式,在求解
-
一个特殊的行列式:
计算方法是,从最后一列开始,利用 -1 去消 x,以此类推,可以找到规律,然后按照第一列展开,可以得到一个神奇的式子(强烈建议自己动手计算一下)
- 范德蒙德行列式:
几个需要注意的点:一定是 j < i j<i j<i并且没有等号;一定是 x i − x j x_i-x_j xi−xj
仔细看,这个也是范德蒙德行列式:
简单的计算方法:在计算范德蒙德行列式时,只需要关注第二行,相当于写一个双层循环,j,i遍历第二行的所有元素,但是i一定是大于j的,当j取一个数后,每个i减去j,每一个相减的数相乘。
实操一下:对于上图第二行,当 j 为 1 时有 ( − 1 − 1 ) ( 2 − 1 ) ( 3 − 1 ) (-1-1)(2-1)(3-1) (−1−1)(2−1)(3−1)
当 j 为 -1 时有 ( 2 − ( − 1 ) ) ( 3 − ( − 1 ) ) (2-(-1))(3-(-1)) (2−(−1))(3−(−1))
当 j 为 2 时有 ( 3 − 2 ) (3-2) (3−2)
最后每个都相乘,就得到了答案: ( − 1 − 1 ) ( 2 − 1 ) ( 3 − 1 ) ( 2 − ( − 1 ) ) ( 3 − ( − 1 ) ) ( 3 − 2 ) (-1-1)(2-1)(3-1)(2-(-1))(3-(-1))(3-2) (−1−1)(2−1)(3−1)(2−(−1))(3−(−1))(3−2)
克莱姆法则
克莱姆法则:含有 n 个方程 n 个未知数的 n 元线性方程组:
当系数行列式 D 不为 0 时,方程组有唯一解,且唯一解是:
这里如果需要用克莱姆法则,就必须满足两个条件:1)含有 n 个方程 n 个未知数;2)系数行列式 D ≠ 0 D ≠ 0 D=0
对于 n 个方程 n 个未知数的 n 元齐次线性方程组:
当系数行列式 D ≠ 0 D ≠ 0 D=0 时,此方程组只有零解。
若此齐次线性方程组有非零解,则其系数行列式 D = 0 D=0 D=0.
以后还可证明得出:当系数行列式 D = 0 D=0 D=0 时,此齐次线性方程组必有非零解.
即上述齐次线性方程组有非零解的充分必要条件是系数行列式 D = 0 D=0 D=0.