线性代数-第一章 行列式

线性代数-第一章 行列式

 

1.1二阶三阶行列式

  • 二阶行列式的计算比较简单:主对角线相乘,减去副对角线相乘

  • 三阶行列式的计算,图形化的方法:每条红色对角线元素相乘再相加,减去每条蓝色对角线元素相乘在相减

  • 上三角、下三角、对角形行列式的计算是主对角元素相乘

1.2排列与逆序

  • n级排列:1、2、……、n组成的一个有序的数组

  • 标准排列(自然排列):1234……n

  • 逆序:在一个n级排列中 i 1 i 2 i 3 … i n i_1i_2i_3 \dots i_n i1i2i3in ,如果一个较大的数 i s i_s is 排在较小的数 i t i_t it 的前面,则称 i s i_s is i t i_t it 构成了一个逆序

  • 逆序数:排列 i 1 i 2 i 3 … i n i_1i_2i_3 \dots i_n i1i2i3in 中逆序的个数称为它的逆序数,记作 N ( i 1 i 2 i 3 … i n ) N(i_1i_2i_3 \dots i_n) N(i1i2i3in).

e . g . e.g. e.g.

N ( 54123 ) = 4 + 3 + 0 = 7 N(54123) = 4+3+0=7 N(54123)=4+3+0=7

  • 逆序数为奇(偶)数的排列称为奇(偶)排列

​ 所以n级标准排列是偶排列

  • 对换:在一个n级排列中,互换某两个数码的位置,其余数码不变,可以得到另一个排列,这样的一个变换称为一个对换

  • 一个对换经过一次对换后,奇偶性改变

e . g . e.g. e.g.

​ 证明不做要求,可以自己取几个数看看,取相邻的两个数交换或者中间有其他数的情况

 

n级排列共有n!个,其中奇排列和偶排列各占一半,各位 n ! 2 ( n > = 2 ) \frac{n!}{2}(n>=2) 2n!(n>=2)

 

n阶行列式的定义

n阶行列式的按行展开的定义:
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] = ∑ j 1 j 2 … j n ( − 1 ) N ( j 1 j 2 … j n ) a 1 j 1 a 2 j 2 … a n j n \begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{bmatrix} = \sum_{j_1j_2 \dots j_n}(-1)^{N(j_1j_2 \dots j_n)}a_{1j_1}a_{2j_2} \dots a_{nj_n} a11a21an1a12a22an2a1na2nann =j1j2jn(1)N(j1j2jn)a1j1a2j2anjn
其中 j 1 j 2 … j n j_1j_2 \dots j_n j1j2jn表示一种列标的排列

  • 行标取标准排列
  • 列表取排列的所有可能
  • 符号由列表排列的逆序数奇偶决定
  • 不同行不同列取出n个元素相乘

注:这是最基础的定义,在计算高阶行列式时其中的大量元素可能为0,就省去了大量的计算。

n阶行列式的按列展开的定义:

也就是将行列的元素互换
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] = ∑ i 1 i 2 … i n ( − 1 ) N ( i 1 i 2 … i n ) a i 1 1 a i 2 2 … a i n n \begin{bmatrix}{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\{\vdots}&{\vdots}&{\ddots}&{\vdots}\\{a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\\end{bmatrix} = \sum_{i_1i_2 \dots i_n}(-1)^{N(i_1i_2 \dots i_n)}a_{i_1 1}a_{i_2 2} \dots a_{i_n n} a11a21an1a12a22an2a1na2nann =i1i2in(1)N(i1i2in)ai11ai22ainn
其中 i 1 i 2 … i n i_1i_2 \dots i_n i1i2in表示一种行标的排列

  • 列标取标准排列
  • 行表取排列的所有可能
  • 符号由行表排列的逆序数奇偶决定
  • 不同行不同列取出n个元素相乘

 

n阶行列式的随机展开的定义:

也就是行列全部取排列的所有可能
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] = ∑ i 1 i 2 … i n ( − 1 ) N ( i 1 i 2 … i n ) + N ( j 1 j 2 … j n ) a i 1 j 1 a i 2 j 2 … a i n j n \begin{bmatrix}{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\{\vdots}&{\vdots}&{\ddots}&{\vdots}\\{a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\\end{bmatrix} = \sum_{i_1i_2 \dots i_n}(-1)^{N(i_1i_2 \dots i_n)+N(j_1j_2 \dots j_n)}a_{i_1 j_1}a_{i_2 j_2} \dots a_{i_n j_n} a11a21an1a12a22an2a1na2nann =i1i2in(1)N(i1i2in)+N(j1j2jn)ai1j1ai2j2ainjn
注:这里出题的时候常考符号的计算,后面的计算比较复杂。
 

特殊的行列式:

  • 行列式的某行(或某列)元素全为0,则次行列式值为0
  • 三角行列式(上三角形行列式、下三角行列式、对角形行列式)等于主对角上元素的乘积,这里的符号都是整数所以不用考虑
  • 副对角行列式等于副对角上的元素的乘积,乘以符号,这里是需要考虑符号的,而且符号的正负不确定

e . g . e.g. e.g.

 

行列式的性质

  • 转置

​ 行列式求转置,值不变:按行展开 = 转置后的安列展开

  • 交换行列式的两行,行列式变号:取得数不变,但是求符号的逆序数是做了一次对换,所有奇偶性改变

  • 如行列式中的两行(两列)的元素相等,则行列式值为零:可用上面的性质证明,若两行相等,则交换相等的两行之后有 D = − D D = -D D=D D = 0 D = 0 D=0

  • 用数 k 取乘行列式的某一行(列)的所有元素,等于用数 k 去乘行列式(比较简单,就不做证明了)

  • 若行列式有两行(列)的元素对应成比例,则行列式的值为零:将成立比例的公因子提出去,则两行(列)的元素相等

 

盘点一下:

  1. 行列式中某一行(列)为0,行列式为0
  2. 行列式中某两行(列)相等,行列式为0
  3. 行列式中某两行(列)成比例,行列式为0

注:反过来不成立

 

  • 某个行列式的某一行(列)的各元素是两个数的和,则可用分为两个行列式的和,将该行(列)的元素分到两个行列式中,其余的不变

在这里插入图片描述

 
献上一道坑题:

  • 将行列式某一行(列)的所有元素乘以同一个数 k 后加到另一行(列)对应位置的元素上,则行列式的值不变:将该行列式分为两个行列式的和,发现乘数 k 的行列式为0

​ 注:思考 k 的值为-1、0、1

  • 反对称行列式,当 n 为奇数时行列式为0

    反对称行列式: a i j = − a j i a_{ij} = -a_{ji} aij=aji

 

行列式按某一行(列)展开

  • 余子式:将行列式中的某一元素所在的行列的所用元素去掉,剩下的构成一个 n-1 阶的行列式,称为元素 a i j a_{ij} aij 的余子式,记作 M i j M_{ij} Mij

  • 代数余子式:在余子式的基础上 ( − 1 ) i + j M i j (-1)^{i+j}M_{ij} (1)i+jMij 称为元素 a i j a_{ij} aij 的代数余子式,记作 A i j A_{ij} Aij

  • n 阶行列式等于它的任意一行(列)的个元素与其对应的代数余子式乘积的和(利用该方法可将高阶行列式转化为低阶行列式来计算)

    注:先用性质尽可能多化 0 ,然后再按 0 多的行列展开

  • 异乘变零定理:行列式中某一行(列)的所用元素与零一行(列)的所用元素的代数余子式的乘积的和为零

    牛题一道:

    这里的技巧就是不直接去算每个代数余子式,将最后一行替换,然后去计算该行列式的值

    若题目中求得是余子式的和,那就转化为代数余子式的和,再去计算:

    在这里插入图片描述
     

行列式按多行(列)展开

  • 在 n 阶行列式 D 中,任意选取 k 行 k 列( 1 ≤ k ≤ n 1≤k≤n 1kn),位于交叉点处的 k 2 k^2 k2 个元素,构成一个 k 阶行列式 N,称 N 为 D 的一个 k 阶子式
  • 在行列式 D 中划去 k 阶子式 N 所在的行和列后剩余的元素构成一个 n − k n-k nk 阶行列式 M,称 M为 N 的余子式
  • A = ( − 1 ) ( i 1 + i 2 + ⋯ + i k ) + ( j 1 + j 2 + ⋯ + j k ) M A = (-1)^{(i_1+i_2 + \dots +i_k)+(j_1+j_2+ \dots +j_k)}M A=(1)(i1+i2++ik)+(j1+j2++jk)M, 称 A 为 N 的代数余子式
  • 拉普拉斯定理:在 n 阶行列式 D 中,任意取定 k 行(列) ( 1 ≤ k ≤ n − 1 ) (1≤k≤n-1) (1kn1),则由这 k 行(列)元素所组成的 k 阶子式 N 1 , N 2 , … , N t ( t = C n k ) N_1,N_2, \dots ,N_t (t = C_n^k) N1,N2,,Nt(t=Cnk)与它们对应的代数余子式 A 1 , A 2 , … , A t A_1,A_2, \dots ,A_t A1,A2,,At乘积之和等于行列式 D ,即

D = N 1 A 1 + N 2 A 2 + ⋯ + N t A t D=N_1A_1+N_2A_2+ \dots +N_tA_t D=N1A1+N2A2++NtAt

​ 这就是按多行展开

​ 注:这里出题时行列式中可能有多个零,所以不为零的余子式就变少了

​ 骚题两道:
在这里插入图片描述

  • 六个结论:在这里插入图片描述

​ 其中:A是 m 阶,B 是 n 阶,前三个简单写一下就可以知道

​ 后三个看宋浩老师小证一下:
在这里插入图片描述

​ 其中有 2 × ( 1 + 2 + ⋯ + m ) 2×(1+2+ \dots +m) 2×(1+2++m)是偶的,所以不用管,然后有 m × n m×n m×n,所以次数是 m × n m×n m×n

​ 注:证明可以不用管,可以直接记结论

 

行列式的计算

按照之前的,有多种计算行列式的方法:

  • 按照定义去求

  • 化为三角形行列式

  • 化处多个0,然后按这行(列)展开

  • 化为低阶行列式计算

    等等
     
     
    有许多特殊的行列式,有各自特殊的计算方法:

  • 爪形行列式:
    在这里插入图片描述

​    计算方法是化为上三角行列式,即用第二列开始的每一列去消掉第一列的 1,就化为了一个上三角形行列式
 
​ 骚题一道:

在这里插入图片描述

​ 计算方法是,用第一行去消下面每一行中的 1,然后就会化为爪形行列式,在求解

  • 一个特殊的行列式:

    在这里插入图片描述

 
​    计算方法是,从最后一列开始,利用 -1 去消 x,以此类推,可以找到规律,然后按照第一列展开,可以得到一个神奇的式子(强烈建议自己动手计算一下)

  • 范德蒙德行列式:

在这里插入图片描述
 

​ 几个需要注意的点:一定是 j < i j<i j<i并且没有等号;一定是 x i − x j x_i-x_j xixj

​ 仔细看,这个也是范德蒙德行列式:
在这里插入图片描述
 

​ 简单的计算方法:在计算范德蒙德行列式时,只需要关注第二行,相当于写一个双层循环,j,i遍历第二行的所有元素,但是i一定是大于j的,当j取一个数后,每个i减去j,每一个相减的数相乘。

​ 实操一下:对于上图第二行,当 j 为 1 时有 ( − 1 − 1 ) ( 2 − 1 ) ( 3 − 1 ) (-1-1)(2-1)(3-1) (11)(21)(31)

​ 当 j 为 -1 时有 ( 2 − ( − 1 ) ) ( 3 − ( − 1 ) ) (2-(-1))(3-(-1)) (2(1))(3(1))

​ 当 j 为 2 时有 ( 3 − 2 ) (3-2) (32)

​ 最后每个都相乘,就得到了答案: ( − 1 − 1 ) ( 2 − 1 ) ( 3 − 1 ) ( 2 − ( − 1 ) ) ( 3 − ( − 1 ) ) ( 3 − 2 ) (-1-1)(2-1)(3-1)(2-(-1))(3-(-1))(3-2) (11)(21)(31)(2(1))(3(1))(32)

范德蒙德行列式的证明

 

克莱姆法则

 克莱姆法则:含有 n 个方程 n 个未知数的 n 元线性方程组:

在这里插入图片描述
 

 当系数行列式 D 不为 0 时,方程组有唯一解,且唯一解是:

在这里插入图片描述

​   这里如果需要用克莱姆法则,就必须满足两个条件:1)含有 n 个方程 n 个未知数;2)系数行列式 D ≠ 0 D ≠ 0 D=0

 

对于 n 个方程 n 个未知数的 n 元齐次线性方程组:

在这里插入图片描述

当系数行列式 D ≠ 0 D ≠ 0 D=0 时,此方程组只有零解。

 

若此齐次线性方程组有非零解,则其系数行列式 D = 0 D=0 D=0.

以后还可证明得出:当系数行列式 D = 0 D=0 D=0 时,此齐次线性方程组必有非零解.

即上述齐次线性方程组有非零解的充分必要条件是系数行列式 D = 0 D=0 D=0.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值