给出N个正整数,找出N个数两两之间最大公约数的最大值。例如:N = 4,4个数为:9 15 25 16,两两之间最大公约数的最大值是15同25的最大公约数5。
Input
第1行:一个数N,表示输入正整数的数量。(2 <= N <= 50000)
第2 - N + 1行:每行1个数,对应输入的正整数.(1 <= S[i] <= 1000000)
Output
输出两两之间最大公约数的最大值。
Input示例
4
9
15
25
16
Output示例
5
问题分析:
如果直接暴力的话,复杂度O(n*n), 会超时。
因此我们换一种暴力的思路,使得计算复杂度有所降低,不会随着N的增大而增大。这就是从最大的S[i]<=1000000开始试探,逐步减小,最终找到最大的最大公约数。
上述过程中,主要是看各个数的倍数(包括倍数为1的)是否与之相等,有两个相等的则找到了所求的答案。
代码如下:
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
const int MAX = 1e6+5;//最大为1000000
int mod[MAX];
int main()
{
int N, temp, ans;
scanf("%d", &N);
for(int i = 1; i <= N; i++){
int x;
scanf("%d", &x);
mod[x]++;
}
for(int i = MAX; i >= 1; i--){//从最大的开始试探
temp=0;
for(int j = i; j < MAX; j += i){//看各个数的倍数是否与之相等
temp += mod[j];
if(temp >= 2) break;//有两个相等即为答案
}
if(temp >= 2){
ans = i;
break;
}
}
printf("%d", ans);
return 0;
}