机器学习(二)分类器及回归拟合

机器学习(二)分类器及回归拟合

转载于:http://blog.csdn.net/studyOpenCV_xinxin/article/details/68107702

机器学习中,分类器作用是在标记好类别的训练数据基础上判断一个新的观察样本所属的类别。分类器依据学习的方式可以分为非监督学习和监督学习。非监督学习顾名思义指的是给予分类器学习的样本但没有相对应类别标签,主要是寻找未标记数据中的隐藏结构。,监督学习通过标记的训练数据推断出分类函数,分类函数可以用来将新样本映射到对应的标签。在监督学习方式中,每个训练样本包括训练样本的特征和相对应的标签。监督学习的流程包括确定训练样本的类型、收集训练样本集、确定学习函数的输入特征表示、确定学习函数的结构和对应的学习算法、完成整个训练模块设计、评估分类器的正确率。这一节的目的是分类器的选取。可以依据下面四个要点来选择合适的分类器。

1. 泛化能力和拟合之间的权衡

  过拟合评估的是分类器在训练样本上的性能。如果一个分类器在训练样本上的正确率很高,说明分类器能够很好地拟合训练数据。但是一个很好的拟合训练数据的分类器就存在着很大的偏置,所以在测试数据上不一定能够得到好的效果。如果一个分类器在训练数据上能够得到很好效果但是在测试数据上效果下降严重,说明分类器过拟合了训练数据。从另一个方面分析,若分类器在测试数据上能够取得好效果,那么说明分类器的泛化能力强。分类器的泛化和拟合是一个此消彼长的过程,泛化能力强的分类器拟合能力一般很弱,另外则反之。所以分类器需要在泛化能力和拟合能力间取得平衡。

2. 分类函数的复杂度和训练数据的大小

  训练数据的大小对于分类器的选择也是至关重要的,如果是一个简单的分类问题,那么拟合能力强泛化能力弱的分类器就可以通过很小的一部分训练数据来得到。反之,如果是一个复杂的分类问题,那么分类器学习就需要大量的训练数据和泛化能力强的学习算法。一个好的分类器应该能够根据问题的复杂度和训练数据的大小自动地调整拟合能力和泛化能力之间的平衡。

3. 输入的特征空间的维数

  如果输入特征空间的向量维数很高的话,就会造成分类问题变得复杂,即使最后的分类函数仅仅就靠几个特征来决定的。这是因为过高的特征维数会混淆学习算法并且导致分类器的泛化能力过强,而泛化能力过强会使得分类器变化太大,性能下降。因此,一般高维特征向量输入的分类器都需要调节参数使其泛化能力较弱而拟合能力强。另外在实验中,也可以通过从输入数据中去除不相干的特征或者降低特征维数来提高分类器的性能。

4. 输入的特征向量之间的均一性和相互之间的关系

  如果特征向量包含多种类型的数据(如离散,连续),许多分类器如SVM,线性回归,逻辑回归就不适用。这些分类器要求输入的特征必须是数字而且要归一化到相似的范围内如 之间。而像K最近邻算法和高斯核的SVM这些使用距离函数的分类器对于数据的均一性更加敏感。但是另一种分类器决策树却能够处理这些不均一的数据。如果有多个输入特征向量,每个特征向量之间相互独立,即当前特征向量的分类器输出仅仅和当前的特征向量输入有关,那么最好选择那些基于线性函数和距离函数的分类器如线性回归、SVM、朴素贝叶斯等。反之,如果特征向量之间存在复杂的相互关系,那么决策树和神经网络更加适合于这类问题。

1回归
一般指线性回归,是求最小二乘解的过程。在求回归前,已经假设所有型值点同时满足某一曲线方程,计算只要求出该方程的系数
2多项式插值:
用一个多项式来近似代替数据列表函数,并要求多项式通过列表函数中给定的数据点。(插值曲线要经过型值点。)
3多项式逼近:
为复杂函数寻找近似替代多项式函数,其误差在某种度量意义下最小。(逼近只要求曲线接近型值点,符合型值点趋势。)
4多项式拟合:
在插值问题中考虑给定数据点的误差,只要求在用多项式近似代替列表函数时,其误差在某种度量意义下最小。
注意:
表列函数:给定n+1个不同的数据点(x0,y0),(x1,y1)…,(xn,yn),称由这组数据表示的函数为表列函数。
逼近函数:求一函数,使得按某一标准,这一函数y=f(x)能最好地反映这一组数据即逼近这一表列函数,这一函数y=f(x)称为逼近函数
插值函数:根据不同的标准,可以给出各种各样的函数,如使要求的函数y=f(x)在以上的n+1个数据点出的函数值与相应数据点的纵坐标相等,即yi=f(x1)(i=0,1,2….n) 这种函数逼近问题称为插值问题,称函数y=f(x)为数据点的插值函数,xi称为插值点。

插值和拟合都是函数逼近或者数值逼近的重要组成部分
他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的目的,即通过”窥几斑”来达到”知全豹”。
简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的 差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。
而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给 定离散点上满足约束。插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。
从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值