深度学习- 激活函数总结(Sigmoid, Tanh, Relu, leaky Relu, PReLU, Maxout, ELU, Softmax,交叉熵函数)

激活函数是用来加入非线性因素的,解决线性模型所不能解决的问题

激活函数通常有以下性质

– 非线性
– 可微性
– 单调性
– 𝑓 𝑥 ≈ 𝑥
– 输出值范围
– 计算简单
– 归一化

1.Sigmoid 函数

Sigmoid函数由下列公式定义
在这里插入图片描述
Sigmoid函数的图形如S曲线
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200406152256756.png

其对x的导数可以用自身表示:
在这里插入图片描述
Sigmoid导数的图形如下
在这里插入图片描述
优点:平滑、易于求导。值域在0和1之间, 函数具有非常好的对称性
缺点
1)激活函数计算量大,反向传播求误差梯度时,求导涉及除法;
2)反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。
由于反向传播过程中需要计算偏导数,通过求导可以得到sigmoid函数导数的最大值为0.25,如果使用sigmoid函数的话,每一层的反向传播都会使梯度最少变为原来的四分之一,当层数比较多的时候可能会造成梯度消失,从而模型无法收敛。)

代码实现

import numpy as np
import matplotlib.pyplot as plt

def sigmoid(x):
    return 1/(1+np.exp(-x))


def derivation_sigmoid(x):
    return sigmoid(x)*(1-sigmoid(x))


def show_sigmoid_line():
    x = np.arange(-10., 10., 0.1)
    y = sigmoid(x)

    plt.plot(x, y)
    plt.grid(True)
    plt.show()

def show_derivative_sigmoid():
    x = np.arange(-5., 5., 0.1)
    y = derivation_sigmoid(x)
    plt.plot(x, y)
    plt.grid(True)
    plt.show()

def show_derivative_sigmoid_and_sigmoid():
    x = np.arange(-5., 5., 0.1)
    y = derivation_sigmoid(x)
    y1 = sigmoid(x)

    plt.plot(x, y)
    plt.plot(x, y1)
    plt.grid(True)
    plt.show()

if __name__ == '__main__':
    show_sigmoid_line()

2. 双曲正切函数(tanh)

tanh函数由下列公式定义
在这里插入图片描述
tanh函数的图形

在这里插入图片描述
tanh函数导数
在这里插入图片描述
f 1 ( x ) = 1 cosh ⁡ 2 x = 1 − tanh ⁡ 2 x f ^1(x) = \frac{1}{\cosh^2x} = 1-\tanh^2x f1(x)=cosh2x1=1tanh2x
Tanh函数导数的图形
在这里插入图片描述

tanh也是一种非常常见的激活函数。与sigmoid相比,它的输出均值是0,使得其收敛速度要比sigmoid快,减少迭代次数。然而,从途中可以看出,tanh一样具有软饱和性,从而造成梯度消失
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt

def tanh(x):
    return (np.exp(x)-np.exp(-x))/(np.exp(x)+np.exp(-x))


def derivation_tanh(x):
    return (1-tanh(x)*tanh(x))
    #return (1 - np.square(tanh(x)))


def show_tanh_line():
    x = np.arange(-10., 10., 0.1)
    y = tanh(x)

    plt.plot(x, y)
    plt.grid(True)
    plt.show()

def show_derivative_tanh():
    x = np.arange(-5., 5., 0.1)
    y = derivation_tanh(x)
    plt.plot(x, y)
    plt.grid(True)
    plt.show()


if __name__ == '__main__':
    show_derivative_tanh()

3. Relu 函数

relu 函数由下列公式定义
在这里插入图片描述
图形
在这里插入图片描述
在神经网络中,线性整流作为神经元的激活函数,定义了该神经元在线性变换 w T x + b w^Tx+b wTx+b之后的非线性输出结果。换言之,对于进入神经元的来自上一层神经网络的输入向量,使用线性整流激活函数的神经元会输出
在这里插入图片描述
CNN中常用。对正数原样输出,负数直接置零。在正数不饱和,在负数硬饱和。relu计算上比sigmoid或者tanh更省计算量,因为不用exp,因而收敛较快。但是还是非zero-centered。

relu在负数区域被kill的现象叫做dead relu,这样的情况下,有人通过初始化的时候用一个稍微大于零的数比如0.01来初始化神经元,从而使得relu更偏向于激活而不是死掉,但是这个方法是否有效有争议

优点:

  1. 更加有效率的梯度下降以及反向传播:避免了梯度爆炸和梯度消失问题
  2. 简化计算过程:没有了其他复杂激活函数中诸如指数函数的影响;同时活跃度的分散性使得神经网络整体计算成本下降

4. Leaky ReLU函数

在输入值为负的时候,带泄露线性整流函数(Leaky ReLU)的梯度为一个常数,而不是0。在输入值为正的时候,带泄露线性整流函数和普通斜坡函数保持一致。换言之,
在这里插入图片描述
图形
在这里插入图片描述
为了解决上述的dead ReLU现象。这里选择一个数,让负数区域不在饱和死掉。这里的斜率都是确定的。

5. PReLU

parametric rectifier:

f(x) = max(ax,x)

但是这里的a不是固定下来的,而是可学习的。

6. ELU

在这里插入图片描述
具有relu的优势,且输出均值接近零,实际上prelu和LeakyReLU都有这一优点。有负数饱和区域,从而对噪声有一些鲁棒性。可以看做是介于relu和LeakyReLU之间的一个东西。当然,这个函数也需要计算exp,从而计算量上更大一些。

7. 大一统:Maxout

在这里插入图片描述
Maxout模型实际上也是一种新型的激活函数,在前馈式神经网络中,Maxout的输出即取该层的最大值,在卷积神经网络中,一个Maxout feature map可以是由多个feature map取最值得到。
maxout的拟合能力是非常强的,它可以拟合任意的的凸函数。但是它同dropout一样需要人为设定一个k值。
为了便于理解,假设有一个在第i层有2个节点第(i+1)层有1个节点构成的神经网络。

在这里插入图片描述
激活值 out = f(W.X+b); f是激活函数。’.’在这里代表內积 X = ( x 1 , x 2 ) T , W = ( w 1 , w 2 ) T X=(x1,x2)^T, W=(w1,w2)^T X=(x1,x2)T,W=(w1,w2)T
那么当我们对(i+1)层使用maxout(设定k=5)然后再输出的时候,情况就发生了改变。
缺点在于增加了参数量。
在这里插入图片描述
此时网络形式上就变成上面的样子,用公式表现出来就是:
z1 = W1.X+b1;
z2 = W2.X+b2;
z3 = W3.X+b3;
z4 = W4.X+b4;
z5 = W5.X+b5;
out = max(z1,z2,z3,z4,z5);
也就是说第(i+1)层的激活值计算了5次,可我们明明只需要1个激活值,那么我们该怎么办?其实上面的叙述中已经给出了答案,取这5者的最大值来作为最终的结果。
总结一下,maxout明显增加了网络的计算量,使得应用maxout的层的参数个数成k倍增加,原本只需要1组就可以,采用maxout之后就需要k倍了。
再叙述一个稍微复杂点的应用maxout的网络,网络图如下:
在这里插入图片描述
对上图做个说明,第i层有3个节点,红点表示,而第(i+1)层有4个结点,用彩色点表示,此时在第(i+1)层采用maxout(k=3)。我们看到第(i+1)层的每个节点的激活值都有3个值,3次计算的最大值才是对应点的最终激活值。我举这个例子主要是为了说明,决定结点的激活值的时候并不是以层为单位,仍然以节点为单位。

8. Softmax 函数

S i = e z i ∑ k e z k S_i = \frac{e^{z_i}}{ \sum_{k}e^{z_k}} Si=kezkezi

Softmax函数求导

∂ s j ∂ z i = { s i ( 1 − s i ) , 当 i = j 时 − s i s j , 当 i != j 时 \frac{\partial s_j}{\partial z_i}= \begin{cases} s_i(1-s_i), & \text {当 i = j 时} \\ -s_is_j, & \text{当 i != j 时} \end{cases} zisj={si(1si),sisj, i = j  i != j 

其中:
s i s_i si 指Softmax求的值
z i z_i zi 指隐层输出值
在这里插入图片描述

推导过程

当 i = j 时
∂ s j ∂ z i = ∂ ( e i z ∑ k e z k ) ∂ z i = ∑ k e z k e z i − ( e z i ) 2 ( ∑ k e z k ) 2 = ( e z i ∑ k e z k ) ( 1 − e z i ∑ k e z k ) = s i ( 1 − s i ) \frac{\partial s_j}{\partial z_i}=\frac{\partial ({\frac{e^z_i}{\sum_k e^{z_k}})}}{\partial z_i}= \frac{\sum_ke^{z_k}e^{z_i}-(e^{z_i})^2}{(\sum_ke^{z_k})^2}=(\frac{e^{z_i}}{\sum_ke^{z_k}})(1-\frac{e^{z_i}}{\sum_ke^{z_k}}) = s_i(1-s_i) zisj=zi(kezkeiz)=(kezk)2kezkezi(ezi)2=(kezkezi)(1kezkezi)=si(1si)

当 i != j 时
∂ s j ∂ z i = ∂ ( e j z ∑ k e z k ) ∂ z i = ( − e z j e z i ) ( ∑ k e z k ) 2 = ( − e z i ∑ k e z k ) ( e z i ∑ k e z k ) = − s i s j \frac{\partial s_j}{\partial z_i}=\frac{\partial ({\frac{e^z_j}{\sum_k e^{z_k}})}}{\partial z_i}=\frac{(-e^{z_j}e^{z_i})}{(\sum_ke^{z_k})^2}=(-\frac{e^{z_i}}{\sum_ke^{z_k}})(\frac{e^{z_i}}{\sum_ke^{z_k}}) =- s_is_j zisj=zi(kezkejz)=(kezk)2(ezjezi)=(kezkezi)(kezkezi)=sisj

9. 隐层经过Softmax与交叉熵函数 的导数是

∂ L ∂ z i = s i − y i \frac{\partial L}{\partial z_i} =s_i-y_i ziL=siyi

其中
y i y_i yi 指期望值(真实值)
s i s_i si 指Softmax求的值
z i z_i zi 指隐层输出值
在这里插入图片描述

隐层经过Softmax与交叉熵函数 求导的推到过程

推导之前要了解的知识

y i y_i yi 指期望值(真实值)
s i s_i si 指Softmax求的值
z i z_i zi 指隐层输出值
Loss 对神经元输出 z i z_i zi的梯度记为 ∂ L ∂ Z i \frac{\partial L}{\partial Z_i} ZiL

Softmax 函数
S i = e z i ∑ k e z k S_i = \frac{e^{z_i}}{\sum_ke^{z_k}} Si=kezkezi
交叉熵损失函数
L o s s = − ∑ i y i l n s i Loss=−\sum_i y_i lns_i Loss=iyilnsi

开始推导

∂ L i ∂ x i = − y i S i \frac{\partial L_i}{\partial x_i} = \frac{-y_i}{Si} xiLi=Siyi
记为 (1) 式

根据复合函数求导法则:
∂ L ∂ z i = ∑ j ( ∂ L j ∂ s j ∗ ∂ s j ∂ z i ) \frac{\partial L}{\partial z_i} = \sum_j(\frac{\partial L_j}{\partial s_j}*\frac{\partial s_j}{\partial z_i} ) ziL=j(sjLjzisj)
其中 L i = − y i ln ⁡ s i L_i=-y_i\ln{s_i} Li=yilnsi

由于
当 i = j 时
∂ s j ∂ z i = ∂ ( e i z ∑ k e z k ) ∂ z i = ∑ k e z k e z i − ( e z i ) 2 ( ∑ k e z k ) 2 = ( e z i ∑ k e z k ) ( 1 − e z i ∑ k e z k ) = s i ( 1 − s i ) \frac{\partial s_j}{\partial z_i}=\frac{\partial ({\frac{e^z_i}{\sum_k e^{z_k}})}}{\partial z_i}= \frac{\sum_ke^{z_k}e^{z_i}-(e^{z_i})^2}{(\sum_ke^{z_k})^2}=(\frac{e^{z_i}}{\sum_ke^{z_k}})(1-\frac{e^{z_i}}{\sum_ke^{z_k}}) = s_i(1-s_i) zisj=zi(kezkeiz)=(kezk)2kezkezi(ezi)2=(kezkezi)(1kezkezi)=si(1si)
记为 (2) 式

当 i != j 时
∂ s j ∂ z i = ∂ ( e j z ∑ k e z k ) ∂ z i = ( − e z j e z i ) ( ∑ k e z k ) 2 = ( − e z i ∑ k e z k ) ( e z i ∑ k e z k ) = − s i s j \frac{\partial s_j}{\partial z_i}=\frac{\partial ({\frac{e^z_j}{\sum_k e^{z_k}})}}{\partial z_i}=\frac{(-e^{z_j}e^{z_i})}{(\sum_ke^{z_k})^2}=(-\frac{e^{z_i}}{\sum_ke^{z_k}})(\frac{e^{z_i}}{\sum_ke^{z_k}}) =- s_is_j zisj=zi(kezkejz)=(kezk)2(ezjezi)=(kezkezi)(kezkezi)=sisj
记为 (3) 式

故:
∂ L ∂ z i = ∑ j ( ∂ L j ∂ s j ∂ s j ∂ z i ) = ∑ j ! = i ( ∂ L j ∂ s j ∂ s j ∂ z i ) + ∑ j = i ( ∂ L j ∂ s i ∂ s i ∂ z i ) \frac{\partial L}{\partial z_i} = \sum_j(\frac{\partial L_j}{\partial s_j}\frac{\partial s_j}{\partial z_i} )=\sum_{j!=i} (\frac{\partial L_j}{\partial s_j} \frac{\partial s_j}{\partial z_i}) + \sum_{j=i}(\frac{\partial L_j}{\partial s_i}\frac{\partial s_i}{\partial z_i}) ziL=j(sjLjzisj)=j!=i(sjLjzisj)+j=i(siLjzisi)
代入(1)(2)(3)得
= ∑ j ! = i ( − y j s j ) ( − s i s j ) + s i ( 1 − s i ) = ∑ j ! = i ( y j ) ( − s i ) + s i ( 1 − s i ) = s i ∑ j y j − y i = \sum_{j!=i}(-\frac{y_j}{s_j})(-s_is_j) +s_i(1-s_i) = \sum_{j!=i}(y_j)(-s_i)+s_i(1-s_i) = s_i\sum_jy_j-y_i =j!=i(sjyj)(sisj)+si(1si)=j!=i(yj)(si)+si(1si)=sijyjyi

由于 y i y_i yi 最终只有一个类别是1,其它类型都是0。因此对于分类问题这个梯度就等于
∂ L ∂ z i = s i − y i \frac{\partial L}{\partial z_i} =s_i-y_i ziL=siyi

参考

https://blog.csdn.net/edogawachia/article/details/80043673
https://www.cnblogs.com/missidiot/p/9378079.html
https://blog.csdn.net/u013230189/article/details/82799469
https://m.sohu.com/a/209844518_609569/?pvid=000115_3w_a

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茫茫人海一粒沙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值