在监督学习中,标签(Label)是指每个训练样本的目标输出或真实答案。模型通过学习输入数据与标签之间的映射关系,从而能够对新数据进行预测。
标签的特点:
- 真实值:标签通常是由人类或系统根据实际情况标注的,代表模型需要学习的目标。
- 任务依赖:标签的形式取决于具体的任务类型,比如分类任务中的类别标签或回归任务中的连续数值。
标签的形式:
-
分类问题:标签通常是离散的类别。
- 示例:
- 图片分类:猫(标签为 1)、狗(标签为 2)。
- 病毒检测:阳性(标签为 1)、阴性(标签为 0)。
- 标签值可以是:
- 文字标签:如 “猫”、“狗”。
- 数值标签:如 0 表示 “阴性”,1 表示 “阳性”。
- 示例:
-
回归问题:标签是连续的数值。
- 示例:
- 房价预测:目标是房子的实际价格(如 $300,000)。
- 温度预测:目标是未来一天的温度(如 28.5°C)。
- 示例:
-
序列任务(如时间序列、文本生成):标签可以是一个序列。
- 示例:
- 语音识别:音频输入的标签是对应的文字转录。
- 机器翻译:输入是源语言句子,标签是目标语言的翻译。
- 示例:
-
图像任务(如分割、检测):标签可以是复杂结构。
- 示例:
- 图像分割:每个像素点的标签对应其所属的区域(如“前景”或“背景”)。
- 目标检测:每个目标的边界框和类别标签。
- 示例:
标签在监督学习中的作用:
-
训练目标:模型通过标签计算损失(Loss),衡量预测与真实值的差距,进而调整参数。
- 损失函数:
- 分类问题:交叉熵损失。
- 回归问题:均方误差。
- 损失函数:
-
学习评估:通过标签可以验证模型的预测是否准确(如分类准确率、均方误差等)。
总结:
- 标签是模型学习的核心目标,定义了输入数据对应的正确答案。
- 标签的形式取决于任务(分类、回归、序列、检测等)。
- 在监督学习中,标签质量直接影响模型的性能,错误或不准确的标签可能导致模型训练效果不佳。