1.题目:把一个数组最开始的几个数字移到数组的末尾,称为数组的旋转,输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1.
分析:
最简单的解法是从左到右遍历数组,找出最小的,但是时间复杂度是O(n), 没有利用上排序的特性。一个递增的排序数组在旋转之后,也是部分有序的,前半部分递增,后半部分也是递增。所以可以考虑用二分查找的方法,在数组的开始和结束的位置放置两个指针,如果排除数组中有相同的数字的话,前半数组的部分比后半数组的部分大,此时,选择数组中间的元素,与左边的指针比较,如果比它大,证明左边的递增序列的长度超过整个序列的一半,最小的数字肯定在中间数字的右边部分,然后将左边的指针指向当前的中间的位置;同理,如果中间的数字啊比右边的指针指向的数字小,则最小的数字肯定在该数字的左边,然后将右边的指针指向这个位置。这样一来,查找的范围缩小一半,可以在O(lgn)的时间复杂度内找到最小的值。但是还有一些特例。如下图:
正常的情况:
特殊情况:
源码:
#include<iostream>
#include<exception>
using namespace std;
int MinInOrder(int* numbers, int index1, int index2);
int Min(int* numbers, int length)
{
if (numbers == NULL || length <= 0)
throw new std::exception("Invalid parameters");
int index1 = 0;
int index2 = length - 1;
int indexMid = index1;
while (numbers[index1] >= numbers[index2])//如果小于的话证明是已排序序列
{
// 如果index1和index2指向相邻的两个数,
// 则index1指向第一个递增子数组的最后一个数字,
// index2指向第二个子数组的第一个数字,也就是数组中的最小数字
if (index2 - index1 == 1)
{
indexMid = index2;
break;
}
// 如果下标为index1、index2和indexMid指向的三个数字相等,
// 则只能顺序查找
indexMid = (index1 + index2) / 2;
if (numbers[index1] == numbers[index2] && numbers[indexMid] == numbers[index1])
return MinInOrder(numbers, index1, index2);
// 缩小查找范围
if (numbers[indexMid] >= numbers[index1])
index1 = indexMid;
else if (numbers[indexMid] <= numbers[index2])
index2 = indexMid;
}
return numbers[indexMid];
}
int MinInOrder(int* numbers, int index1, int index2)//顺序查找最小的
{
int result = numbers[index1];
for (int i = index1 + 1; i <= index2; ++i)
{
if (result > numbers[i])
result = numbers[i];
}
return result;
}
int main()
{
int result = 0;
int array1[] = { 3, 4, 5, 1, 2 };
result = Min(array1, 5);
cout << "the result is " << result << endl;
int array2[] = { 1, 0, 1, 1, 1 };//特殊情况
result = Min(array2, 5);
cout << "the result is " << result << endl;
int array3[] = { 1, 2, 3, 4, 5 };//特殊情况
result = Min(array3, 5);
cout << "the result is " << result << endl;
system("PAUSE");
return 0;
}