caffe中文件参数设置(二):视觉层(Vision Layers)及其参数设置

标签: caffe 参数设置 视觉层 小项目
98人阅读 评论(0) 收藏 举报
分类:

本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。

1、Convolution层:

就是卷积层,是卷积神经网络(CNN)的核心层。

层类型:Convolution

  lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。

在后面的convolution_param中,我们可以设定卷积层的特有参数。

必须设置的参数:

    num_output: 卷积核(filter)的个数

    kernel_size: 卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定

其它参数:

     stride: 卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。

     pad: 扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。

      weight_filler: 权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
      bias_filler: 偏置项的初始化。一般设置为"constant",值全为0。
      bias_term: 是否开启偏置项,默认为true, 开启
      group: 分组,默认为1组。如果大于1,我们限制卷积的连接操作在一个子集内。如果我们根据图像的通道来分组,那么第i个输出分组只能与第i个输入分组进行连接。
 
输入:n*c0*w0*h0
输出:n*c1*w1*h1
其中,c1就是参数中的num_output,生成的特征图个数
 w1=(w0+2*pad-kernel_size)/stride+1;
 h1=(h0+2*pad-kernel_size)/stride+1;
如果设置stride为1,前后两次卷积部分存在重叠。如果设置pad=(kernel_size-1)/2,则运算后,宽度和高度不变。
示例:
    layer {  
      name: "conv1"  
      type: "Convolution"  
      bottom: "data"  
      top: "conv1"  
      param {  
        lr_mult: 1  
      }  
      param {  
        lr_mult: 2  
      }  
      convolution_param {  
        num_output: 20  
        kernel_size: 5  
        stride: 1  
        weight_filler {  
          type: "xavier"  
        }  
        bias_filler {  
          type: "constant"  
        }  
      }  
    }  
2、Pooling层
也叫池化层,为了减少运算量和数据维度而设置的一种层。
层类型:Pooling
必须设置的参数:
     kernel_size: 池化的核大小。也可以用kernel_h和kernel_w分别设定。
其它参数:
   pool: 池化方法,默认为MAX。目前可用的方法有MAX, AVE, 或STOCHASTIC
  pad: 和卷积层的pad的一样,进行边缘扩充。默认为0
  stride: 池化的步长,默认为1。一般我们设置为2,即不重叠(步长=窗口大小)。也可以用stride_h和stride_w来设置。
 示例:
    layer {  
      name: "pool1"  
      type: "Pooling"  
      bottom: "conv1"  
      top: "pool1"  
      pooling_param {  
        pool: MAX  
        kernel_size: 3  
        stride: 2  
      }  
    }  

pooling层的运算方法基本是和卷积层是一样的。

输入:n*c*w0*h0
输出:n*c*w1*h1
和卷积层的区别就是其中的c保持不变
 w1=(w0+2*pad-kernel_size)/stride+1;
 h1=(h0+2*pad-kernel_size)/stride+1;
如果设置stride为2,前后两次卷积部分重叠。
 
3、Local Response Normalization (LRN)层
此层是对一个输入的局部区域进行归一化,达到“侧抑制”的效果。可去搜索AlexNet或GoogLenet,里面就用到了这个功能
 层类型:LRN
参数:全部为可选,没有必须
  local_size: 默认为5。如果是跨通道LRN,则表示求和的通道数;如果是在通道内LRN,则表示求和的正方形区域长度。
  alpha: 默认为1,归一化公式中的参数。
  beta: 默认为5,归一化公式中的参数。
  norm_region: 默认为ACROSS_CHANNELS。有两个选择,ACROSS_CHANNELS表示在相邻的通道间求和归一化。WITHIN_CHANNEL表示在一个通道内部特定的区域内进行求和归一化。与前面的local_size参数对应。
 
归一化公式:对于每一个输入, 去除以,得到归一化后的输出
 
示例:

    layers {  
      name: "norm1"  
      type: LRN  
      bottom: "pool1"  
      top: "norm1"  
      lrn_param {  
        local_size: 5  
        alpha: 0.0001  
        beta: 0.75  
      }  
    }  

4、im2col层

如果对matlab比较熟悉的话,就应该知道im2col是什么意思。它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。

看一看图就知道了:

在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。

看看两种卷积操作的异同:

以上转自:http://blog.csdn.net/langb2014/article/details/50456631


查看评论

【深度学习】caffe中那些layers

本文介绍了深度学习开源框架caffe中各个layer的内容及使用方法。
  • tracer9
  • tracer9
  • 2016-01-04 16:50:04
  • 10332

Caffe常用层参数介绍

DATAlayers { name: "data" type: DATA top: "data" top: "label" data_param { source: ".....
  • Cheese_pop
  • Cheese_pop
  • 2016-07-25 16:50:44
  • 3091

caffe中文件参数设置(四):其它常用层及其参数设置

本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。1、softmax-losssoft...
  • kele_imon
  • kele_imon
  • 2018-01-18 10:13:09
  • 64

深度学习caffe平台--train_val.prototxt文件中视觉层(Vision Layers)层及参数详解

所有的层都具有的参数,如name, type, bottom, top和transform_param请参看前一篇文章 本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convo...
  • liuweizj12
  • liuweizj12
  • 2016-08-08 16:18:10
  • 2115

Caffe中DeconvolutionLayer的用法

写在前面:关于Deconvolution 与Transposed Convolution的字面上的区别,在此不再讨论,以下统称为Deconvolution,可参考http://blog.csdn.ne...
  • u013250416
  • u013250416
  • 2018-01-05 21:07:39
  • 801

caffe SoftmaxWithLoss 层

loss 函数:      深度 学习 的 目标, 通过调整  w,b 参数, 得到一个 更小的 loss caffe 中的 loss 在Forward阶段产生     在Softmax...
  • stone_linclon
  • stone_linclon
  • 2016-06-17 16:29:46
  • 717

DL学习笔记【11】caffe参数调节-loss层

转自:http://www.cnblogs.com/lutingting/p/5240688.html 在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成...
  • Sun7_She
  • Sun7_She
  • 2016-07-26 13:38:18
  • 2490

(6)caffe总结之其它常用层及参数

本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。 1、softmax-loss s...
  • u013289254
  • u013289254
  • 2017-04-20 21:14:03
  • 219

深度学习caffe平台--train_val.prototxt文件中激活层(Activiation Layers)及参数及参数详解

在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入...
  • liuweizj12
  • liuweizj12
  • 2016-08-08 16:19:40
  • 1169

caffe solver参数意义与设置

batchsize:每迭代一次,网络训练图片的数量,例如:如果你的batchsize=256,则你的网络每迭代一次,训练256张图片;则,如果你的总图片张数为1280000张,则要想将你所有的图片通过...
  • qq_32206625
  • qq_32206625
  • 2016-09-22 11:27:01
  • 2585
    个人资料
    持之以恒
    等级:
    访问量: 3249
    积分: 337
    排名: 23万+
    文章存档
    最新评论