2023全球人工智能开发者先锋大会(GAIDC)于2023年2月25日-26日在上海举行。本届大会主题为“向光而行的AI开发者”,以AI开发者为核心,为AI开发者带来产业之光、科技之光、未来之光,由昇思MindSpore开源社区和上海市人工智能行业协会主办的分论坛AI For Science邀请到一批行业专家和前沿学者带来精彩的主题演讲,洞悉当下AI for Science研究背后的深刻规律,分享AI 助力生物计算、流体仿真、新型材料等领域的最新趋势、最新技术以及在企业的应用实例,与此同时也邀请到AI大模型领域专家分享最新技术进展与使能AI开发实践,展示了大模型在不同领域中的广泛应用和重要性。
AI4S的发展趋势和华为的愿景
诺奖得主威尔逊曾说过,现代科学研究的三大支柱:科学实验、理论研究、科学计算。华为昇思MindSpore技术总经理、AI for Science实验室主任、华为软件领域科学家于璠博士介绍”华为积极投入计算产业,以为广大科研工作者提供全栈自主可控且高效易用的软硬件平台为愿景。 昇思MindSpore开源两年多来,秉持全场景协同、全流程极简、全架构统一三大价值主张,并致力于增强开发易用性、提升原生支持大模型和AI+科学计算的体验。”
围绕该愿景,昇思MindSpore从创立之初就已经布局科学计算领域,通过多尺度混合计算和高阶混合微分两大关键创新,将昇思原有的AI计算引擎升级为AI与科学计算的统一引擎,实现融合的统一加速。在电磁仿真、生物计算、流体仿真等领域与多家科研院所和企业合作,推出MindElec,MindSPONGE,MindFlow等AI4S领域包,降低科研开发门槛,推进AI4S的发展。
·生物计算领域,昇思与北京大学高毅勤老师课题组合作,开发了新一代分子模拟软件MindSPONGE,通过架构创新实现分子动力学与AI的无缝融合,开发简单且运行高效;同时蛋白质结构预测精度业界领先,高效内存复用与图算融合技术使能端到端速度与最大推理序列长度成倍提升,并支持单序列预测与多结构评估,CAMEO多次月榜第一。
·流体仿真领域,昇思与商飞研发团队联合创新,于2022年发布了首个工业级流体仿真大模型“东方·御风”与流体仿真领域包MindFlow,实现了基于AI方法的高效飞机翼型仿真,端到端仿真耗时缩短十倍,助力国产大飞机研发。
·昇思与华为终端仿真团队合作开发MindElec电磁仿真工具包,实现高效手机电磁仿真,速度与传统软件 CST相比提升十倍以上。后又与东南合作金陵.电磁脑基础模型,基于AI方法进行大规模的阵列天线电磁仿真。AI方法相比于传统方法效率平均提升10X+,且随着目标规模的增大,该提升将会更加显著。
华为昇思MindSpore技术总经理 于璠
生物计算:分子模拟结合深度学习在分子体系中的方法和应用
北京大学化学与分子工程学院教授,北京大学理学部副主任,JCTC杂志副主编、中国化学会副秘书长高毅勤教授介绍了癌变过程中基因组的变化;基因与基因接触概率与基因融合,基因共表达,编码蛋白间相互作用和功能高度相关;同时还介绍了与华为昇思团队在计算生物上的研究探索和联合创新,并联合推出计算生物套件MindSPONGE。
使用模块化的设计思路,可以快速构建分子模拟流程,并且基于MindSpore自动并行、图算融合等特性,可高效地完成传统分子模拟。在分子模拟上基于AI框架MindSpore设计,具备自动微分,自动并行,无需手动开发求导过程等优点。在结构预测上推出MEGA-Protein,MindSpore 复杂控制流, 高效内存复用, 单卡推理支持3k序列;自动并行 单节点8卡推理支持8K+序列;算法层面创新引入了MSA生成重构模型,突破了在「孤儿序列」、高异变序列和人造蛋白等MSA匮乏场景下无法做出准确预测的限制,并在全球蛋白质结构预测竞赛CAMEO中多次获得第一。
北京大学化学与分子工程学院教授 高毅勤
流体仿真:智能流体力学的发展和关键技术
西北工业大学航空学院张伟伟教授进行了以智能流体力学的发展为主题的演讲。针对智能流体力学,张老师分享了深度学习方法在飞行器高雷诺数湍流场的高精度求解、飞行器机动飞行的高精度仿真与控制律设计以及变构型跨声速流场的快速预测等方面的精彩工作。
张伟伟教授基于华为昇腾硬件及昇思MindSpore上进行深度优化,基于MindSpore的多任务混合优化、混合精度优化、动态分层loss scale、数据增强等关键技术,利用高效的坐标转换和几何编码的技术,实现超临界翼型流场复杂边界和非标数据的高效特征提取;设计基于ViT的网络模型结构,实现翼型几何和初始信息和流场物理信息映射。研究效果显著,分离流场景实现了精度3~5倍的提升,在端到端流场快速预测实现了三维流场秒级推理,在保证精度的同时实现流场仿真秒级推理,单次仿真速度相比传统仿真提升24倍(10min>25s),且能支持多种飞行参数(变马赫数,变攻角,变翼型)的泛化推理,满足超临界翼型跨声速巡航设计要求,缩短整体的设计研发周期数百倍。未来华为会进一步联合张伟伟老师、商飞在智能流体力学上进行联合创新,继续研究AI湍流建模、伴随优化、端到端流场快速预测等技术难题,结合大模型训练、迁移学习等技术,推动智能流体力学基础大模型的构建,形成产业落地。
西北工业大学教授 张伟伟
新型材料:人工智能加速新型材料的研发
清华大学副教授、博士生导师、福布斯中国科技女性王笑楠教授介绍了AI加速新型材料研发的重大机遇与战略性价值、经典AI方法在材料领域面临的技术挑战、以及与华为昇思MindSpore等团队在材料领域合作的突破性创新工作。
王笑楠教授团队针对如何利用深度学习、主动学习、数据增强和自动化技术实现材料多尺度体系下的合成、表征、筛选进行探索,在微观、宏观以及跨尺度任务中获得了优异的成果。AI与材料的深度融合可以带来研究范式的跃迁,转变传统的“人工实验”到“人工智能”从而带来产业突破,王笑楠教授联合华为昇思MindSpore面向具有战略性意义的“碳中和”目标,构建系统全面的化学材料大数据平台以及精准高效的通用材料研发模型,提供基于AI的新材料研发范式、充分利用AI计算优势令新材料研发降本增效、助力我国“双碳”目标实现,创造社会、经济乃至环境效益。
清华大学化工系副教授 王笑楠
药物方向:新范式驱动药物研发新工具及应用实例
深势科技生物计算负责人王冬冬博士展示了基于AI for Science新范式驱动药物研发新工具及应用实例。针对传统药物研发流程中的痛点,王冬冬博士详细讲解了借助AI for Science所做出的突破。其中,Hermite实现了高效易用的蛋白质结构计算与药物分子优化, RiDYMO平台则提供了高效分子动力学模拟,辅助难成药靶点发现。
深势科技生物计算负责人 王冬冬
微观到宏观跨学科的共性AI算法探索
上海人工智能实验室领军科学家、香港中文大学欧阳万里博士带来了一场围绕从微观到宏观、跨学科的共性AI探索的精彩演讲。欧阳博士长期从事计算机视觉与深度学习领域的研究,本次分享深刻阐述了AI for Science如何拓展AI的边界以及探索微观到宏观的共性AI算法的重要性。
上海人工智能实验室领军科学家 欧阳万里
Why Julia? AI 科学计算的挑战
同元软控科学计算高级专家、华东师范大学科学学院博士、Julia语言社区组织者陈久宁博士基于对科学计算与两语言问题进行深度剖析,介绍了Julia语言产生的背景以及同元软控围绕Julia布局科学计算的原因。陈博士重点分享了Julia能够同时允许高性能、无开销抽象与动态交互特性解决方案的核心性能。并通过Galois域上的数值计算这样一个案例向我们展示了Julia语言的具体实现,同时剖析了Julia语言本身的不足与挑战。 陈博士最后展示了同元自主研发的亚洲唯一自主的系统建模仿真 软件MWORKS,同时介绍“其中的AI模块基于MindSpore开发”,未来将进一步加深与昇思MindSpore的合作。
同元软控科学计算高级专家 陈久宁
总结和展望
在此次大会中,昇思MindSpore与各个领域的专家、开发者深入探讨了在科学计算领域、大模型领域,如何助力科学计算、技术与应用、未来趋势与发展方向等。在科学计算领域,昇思MindSpore规划10+AI科学计算领域包,加速7+核心方程求解,支撑8+行业科学计算应用落地,在电磁仿真、生物计算、流体仿真等领域均已布局并持续研究。 在电磁仿真领域,未来规划持续加速阵列天线仿真,手机电磁仿真,降低仿真成本。在生物领域持续增强分子模拟能力,加速药物研发全流程,减少研发成本,降低研发周期。在流体仿真领域持续提升气动仿真效率,助力国产大飞机研发迭代。
未来昇思还规划了新型材料、气象等领域联合业界进行联合创新,完善基础软件能力,加速科研探索,欢迎各位专家学者积极拥抱昇思MindSpore,联合创新,共同繁荣AI的前沿技术研究和产业发展。