tensorflow
文章平均质量分 91
余恒kenneth_yu
C++软件架构师;自动驾驶算法工程师;
展开
-
tensorflow 核心流程剖析 1-- 简介
这个博文是什么和不是什么对于大部分使用者来说,tensorflow就像一个大黑盒,我们平时接触的只是一层python API的封装。 概括来说,python API只是负责搭建好要运行的神经网络模型,即静态模型。 通过python API能看、能改,但是不能运行。真正运行这个神经网络模型的,是其C++实现的部分,可以看做一个动态模型。 也是这部分,才让tensor真正的flow起来。不分析的:原创 2017-08-09 12:18:44 · 1528 阅读 · 0 评论 -
TensorFlow 核心流程剖析 -- 2 神经网络模型的构建、分割和优化
Graph的生成总体流程我们知道, 在tensorflow里,model是以compuatation graph的形式存在,作为训练和inference的载体。下面简称graph。 graph的生成,源自通过python API中对graph中nodes的定义。一般来讲,我们通过python API这样开始训练一个model:定义graph和其中的node创建session去Run这个grap原创 2017-08-07 11:09:27 · 5234 阅读 · 0 评论 -
Tensorflow 核心流程剖析 3-- 运行设备Device的生成和管理
1. 关键术语描述kernel在神经网络模型中,每个node都定义了自己需要完成的操作,比如要做卷积、矩阵相乘等。而实现这个操作的算法,我们单独抽象出来,叫做kernel。 可以将kernel看做是一段能够跑在具体硬件设备上的算法程序,所以即使同样的2D卷积算法,我们有基于gpu的Convolution 2D kernel实例、基于cpu的Convolution 2D kernel实例。devi原创 2017-08-11 15:30:50 · 1259 阅读 · 0 评论 -
tensorflow 核心流程剖析 4-- 使用profiler检测神经网络模型的运行性能
tensorflow profiler 主要特性使用tensorflow profiler举例高级功能Advisortensorflow profiler 主要特性从r1.3版本开始, tensorflow 提供profiler模块,参见github上的官网文档为方便描述,下面将tf中运行的神经网络模型简称为graph,其中的节点称为node.profi原创 2017-08-22 08:33:11 · 13391 阅读 · 2 评论 -
Deep Reinforcement learning - 2. 基于tensorflow的DDPG实现
TODDeep Reinforcemen learning - 2. 基于tensorflow的DDPG实现基于我上一篇博客的算法介绍, 使用tensorflow的代码实现,仿真环境使用gym torcs 为了快速训练出结果,我没有使用driver view图像作为输入,而是使用low dimension传感器数据作为输入, 总共29个数据,包括: - 赛车速度: speedX,原创 2017-12-12 15:46:19 · 22820 阅读 · 23 评论