转自:http://blog.csdn.net/lilai619/article/details/51832985
深度学习中一些好的加深理解的文章,全部收录于互联网,版权属原网站所有。
① 1X1卷积核到底有什么作用呢?
http://caffecn.cn/?/question/136
② Faster rcnn的特征图到原图区域映射问题?
http://caffecn.cn/?/question/135
③ 基于深度学习的目标检测研究进展
④caffe的总体流程是怎样的?
http://caffecn.cn/?/question/123
⑤在caffe中卷积核是三维的还是二维的?
http://caffecn.cn/?/question/158
⑥caffe在做train()时候的详细流程图
http://caffecn.cn/?/question/242
⑦caffe的proto里面的std是什么意思?怎么调?
http://caffecn.cn/?/question/37
⑧caffe怎么单步调试?
https://www.zhihu.com/question/27987666
⑨Softmax和SoftmaxWithLoss的反向误差传递的原理分别是什么?
http://freemind.pluskid.org/machine-learning/softmax-vs-softmax-loss-numerical-stability/
12.caffe中image_mean的作用是什么?
http://www.caffecn.cn/?/question/15
14.
caffe里sigmoidCrossEntropyLoss层计算
http://www.caffecn.cn/?/question/25
15.
请问在OCR方面caffe有没有什么比较好的网络模型?
http://www.caffecn.cn/?/question/30
http://blog.csdn.net/gybheroin/article/details/54133556
23.stride的大小来左右滑动窗口,那么通过修改什么可以调整上下滑动卷积窗口的步幅
http://www.caffecn.cn/?/question/74
http://blog.csdn.net/shakevincent/article/details/52115872