caffe--学习中的一些知识点

转自:http://blog.csdn.net/lilai619/article/details/51832985


深度学习中一些好的加深理解的文章,全部收录于互联网,版权属原网站所有


① 1X1卷积核到底有什么作用呢?

http://caffecn.cn/?/question/136

② Faster rcnn的特征图到原图区域映射问题?
http://caffecn.cn/?/question/135

③ 基于深度学习的目标检测研究进展


④caffe的总体流程是怎样的?

http://caffecn.cn/?/question/123


⑤在caffe中卷积核是三维的还是二维的?

http://caffecn.cn/?/question/158

⑥caffe在做train()时候的详细流程图

http://caffecn.cn/?/question/242

⑦caffe的proto里面的std是什么意思?怎么调?

http://caffecn.cn/?/question/37

⑧caffe怎么单步调试?
https://www.zhihu.com/question/27987666

⑨Softmax和SoftmaxWithLoss的反向误差传递的原理分别是什么?

http://freemind.pluskid.org/machine-learning/softmax-vs-softmax-loss-numerical-stability/

⑩caffe进行fineture的小技巧

http://www.caffecn.cn/?/question/9


11.fine_tuning原理问题

http://www.caffecn.cn/?/question/12

12.caffe中image_mean的作用是什么?
http://www.caffecn.cn/?/question/15

13.图像分类中,类别个数不均匀,相差很大,该怎么处理?

http://www.caffecn.cn/?/question/20

14. caffe里sigmoidCrossEntropyLoss层计算
http://www.caffecn.cn/?/question/25

15. 请问在OCR方面caffe有没有什么比较好的网络模型?
http://www.caffecn.cn/?/question/30

16.caffe里面的误差的反向传播怎么实现来的?

http://www.caffecn.cn/?/question/36

17.Caffe中的各种loss函数适合哪些问题?

http://www.caffecn.cn/?/question/43

18.关于caffe 里面卷积层featuremap 的问题

http://www.caffecn.cn/?/question/46


19.各种Pooling方法适用哪些情况?

http://www.caffecn.cn/?/question/57

20.假如有两个model,如何把其中一个model的某一层的权重赋给另一个model的对应层。

http://www.caffecn.cn/?/question/59

21.可视化神经网络的中间特征

http://www.caffecn.cn/?/question/70

http://blog.csdn.net/gybheroin/article/details/54133556

23.stride的大小来左右滑动窗口,那么通过修改什么可以调整上下滑动卷积窗口的步幅
http://www.caffecn.cn/?/question/74

http://blog.csdn.net/shakevincent/article/details/52115872

25关于message NetState和message NetStateRule

http://www.caffecn.cn/?/question/104

26.新增lmdb格式的训练样本的方法

http://www.caffecn.cn/?/question/112

27.momentum的作用是什么?

http://www.caffecn.cn/?/question/117

28.如何实现在prototxt 中实现多通道呢?

http://www.caffecn.cn/?/question/144

29.[Batch Normalization] Predict中BN是怎么计算的?

http://www.caffecn.cn/?/question/165

30.请问caffe里data layer后面有个{layerName}_{topBlobName}_{0}_{split)的层是干嘛的?

http://caffecn.cn/?/question/198
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值