Python实现的一个简单的GAN(生成对抗网络)例子

一个简单的GAN(生成对抗网络)例子

以下是使用Python实现的一个简单的GAN(生成对抗网络)例子,它可以生成手写数字图像

```python
# Importing libraries
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Dropout
from tensorflow.keras.layers import BatchNormalization, Activation, ZeroPadding2D
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.optimizers import Adam

# Loading the dataset
(X_train, _), (_, _) = mnist.load_data()

# Rescaling the images to [-1, 1] range
X_train = X_train / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)

# Defining the generator network
generator = Sequential()
generator.add(Dense(256, input_dim=100))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization(momentum=0.8))
generator.add(Dense(512
### 使用生成式对抗网络进行股票价格预测 #### 方法概述 生成式对抗网络(GAN)由两部分组成:生成器和判别器。在金融时间序列预测中,尤其是股票市场价格预测方面,GAN可以模拟复杂的市场动态并捕捉潜在的时间依赖关系[^1]。 - **生成器**负责创建看似真实的合成数据样本,在本场景下即为可能的未来股价走势; - **判别器**则尝试区分这些合成数据与实际历史记录之间的差异。通过不断迭代训练过程,使得生成的数据越来越接近真实情况。 为了适应特定领域的需求,研究者们提出了多种改进型GAN结构来处理一维或多维时间序列: - 对于单变量情形下的简单收盘价预测,可以直接采用标准DCGAN框架; - 当涉及更复杂特征组合时,则需考虑条件GAN或SeqGAN等变种形式以纳入额外影响因素如成交量、宏观经济指标等辅助信息[^2]。 #### 实际案例分析 一项具体的应用实例展示了如何利用Wasserstein GAN (WGAN) 来改善传统LSTM模型对未来几天内某支个股日收益率变化趋势的预估准确性。实验结果显示,相较于仅依靠均方误差(MSE)作为优化目标的传统方法,引入对抗机制后的解决方案能够更好地保持长期记忆特性,并有效减少过拟合风险[^4]。 此外,还有研究表明结合自注意力机制(self-attention mechanism) 的TimeGAN能够在保留局部模式的同时增强全局连贯性表达能力,从而进一步提升对于非平稳随机过程中隐藏规律的学习效果[^3]。 ```python import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense, Dropout def build_generator(input_shape): inputs = Input(shape=input_shape) lstm_out = LSTM(50, return_sequences=True)(inputs) dropout = Dropout(0.2)(lstm_out) predictions = Dense(units=1, activation='linear')(dropout) model = Model(inputs=[inputs], outputs=predictions) return model def build_discriminator(): inputs = Input(shape=(None, 1)) lstm_out = LSTM(50, return_sequences=False)(inputs) dense_output = Dense(1, activation="sigmoid")(lstm_out) model = Model(inputs=[inputs], outputs=dense_output) return model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值