概率dp第一题
期望倒着推,概率正着求
用E(i,j)表示状态i,j到目标状态的期望步数
那么会有E(i,j)=1+(i/n * j/s)*E(i,j)+(n-i)/n*(j/s)*E(i+1,j)+(i/n)*(s-j)/s*E(i,j+1)+(n-i)/n*(s-j)/s*E(i+1,j+1)
然后移项,dp递推就ok了
最开始我想的是用E(i,j)表示从状态(0,0)到达状态(i,j)的期望步数。。然后发现不可写。。换个思路海阔天空啊
#include<iostream>
#include<sstream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<math.h>
#include<map>
#include<time.h>
#include<set>
#include<string>
#include<vector>
#include<algorithm>
using namespace std;
#define inf 0x7fffffff
#define lc l,m,index<<1
#define rc m+1,r,index<<1|1
#define max_n 4000005
#define mod 100000007
#define LL long long
#define max_log 20
int n,s;
double dp[1005][1005];
int main()
{
while(~scanf("%d%d",&n,&s))
{
memset(dp,0,sizeof(dp));
dp[n][s]=0;
for(int i=n;i>=0;i--)
{
for(int j=s;j>=0;j--)
{
if(i==n && j==s)continue;
dp[i][j]=(n*s+dp[i+1][j]*(n-i)*j+dp[i][j+1]*(s-j)*i+dp[i+1][j+1]*(s-j)*(n-i))/(n*s-i*j);
}
}
printf("%.4f\n",dp[0][0]);
}
return 0;
}