用CherryStudio、硅基流动与DeepSeek,打造你的专属知识宝库

引言

在信息爆炸的时代,知识的积累与管理变得愈发重要。个人知识库就像是我们的知识宝库,能帮助我们有效地整理、存储和快速检索各种重要信息。无论是工作中的专业知识、学习过程中的资料,还是生活里的各类经验,都能在个人知识库中找到合适的位置。它不仅能提高我们的工作和学习效率,还能助力我们进行知识的深度挖掘与创新。

今天,我将为大家详细介绍如何利用 CherryStudio、硅基流动与DeepSeek 来搭建一个属于自己的强大个人知识库。

CherryStudio + SiliconFlow + DeepSeek
CherryStudio + SiliconFlow + DeepSeek 截图自各官方网站

这里可能有人想,既然都有了DeepSeek的App,为什么还要自己搭建。原因想必大家都知道。因为它太火爆了!总是出现‘‘服务器繁忙,请稍后再试’’的提示。所以动手能力强的可以自己试试搭建一个。还要说明一点,这次的操作跟电脑配置好坏关系不大,可放心操作。

一、认识搭建工具

1.CherryStudio

Cherry Studio官网 图片来源截图官方网站
Cherry Studio官网 图片来源截图官方网站

CherryStudio是一个支持多平台的AI客户端,致力于让更多人能够享受到AI带来的便利,内置 30 多个行业的智能助手,300 + 预配置 AI 助手,帮助用户在多种场景下提升工作效率。兼容 Windows、Mac ,未来还会支持移动平台,真正实现了跨平台使用 。在文档与数据处理方面,它支持 PDF、DOCX、PPTX、XLSX、TXT、MD 等多种文件格式,还具备 WebDAV 文件管理与数据备份功能。个别模型还支持联网。

CherryStudio客户端
CherryStudio客户端

2.硅基流动 SiliconFlow

SiliconFlow官网 图片来源各官方网站
SiliconFlow官网 图片来源截图官方网站

SiliconCloud是一站式大模型云服务平台,其目标是通过优化大模型使用体验,帮助用户实现 “Token 自由”,让你能以更低成本和更高效率使用先进的大语言模型(LLMs)及其他生成式人工智能(AI)模型。平台集成了多种主流开源大模型,从文本生成模型如 DeepSeek R1、Qwen2.5、GLM-4,到图片生成模型如 Janus-Pro、Stable-Diffusion(SDXL)等一应俱全 。它还支持多模态模型,无论是文本生成语音、文本生成图像还是文本生成视频,都能轻松实现。而且,硅基流动提供行业内较低的 API 调用价格,对于 9B 及以下的模型,还提供免费 API 服务,对个人开发者及小型项目十分友好。同时,平台内置推理加速引擎,能显著提升模型的响应速度及生成效率,还支持大模型的微调与托管,方便用户根据自定义数据优化模型性能。

3.DeepSeek

DeepSeek官网 图片来源截图官方网站
DeepSeek官网 图片来源截图官方网站

DeepSeek 是一家中国人工智能公司,成立于 2023 年 7 月,总部位于杭州。 由量化投资公司幻方量化创始人梁文锋领导,DeepSeek 致力于开发高效且高性能的生成式 AI 模型。

自成立以来,DeepSeek 发布了多个引人注目的开源模型,包括:

DeepSeek Coder:专注于代码生成和调试。

DeepSeek LLM:通用大语言模型,支持多种自然语言处理任务。

DeepSeek-V2:采用混合专家(MoE)架构,参数量达到 2360 亿,推理成本显著降低。

DeepSeek-V3:参数量达到 6710 亿,采用创新的 MoE 架构和 FP8 混合精度训练,训练成本仅为 557.6 万美元。

DeepSeek-R1:新一代推理模型,性能与 OpenAI 的 o1 正式版相当,并已开源。

当 Cherry-Studio 遇上硅基流动和 DeepSeek,又会碰撞出怎样的火花呢?下文中,我们将深入探讨它们的组合应用。

二、搭建前的准备工作

文字说明下面有图片说明

1.硅基流动平台注册

首先,打开浏览器,访问硅基流动官网硅基流动统一登录,目前官方有活动,注册输入我的邀请码 lCIBYejZ 或者直接点链接 硅基流动统一登录 ,即可获得 2000 万 Tokens 。

互利共赢
互利共赢

在官网首页点击 “Log in” 按钮,进入登录页面 。按照页面提示,填写有效的手机号码、设置密码,并填写其他必要信息(如邀请码 lCIBYejZ ) 。完成信息填写后,点击 “获取验证码” 按钮,手机将收到一条包含验证码的短信,在指定位置输入验证码,验证手机号码真实性 。仔细阅读并勾选同意硅基流动的用户协议和隐私政策,最后点击 “注册/登录” 按钮完成注册流程 。

2.创建 API 密钥

创建 API 密钥注册成功并登录硅基流动平台后,在页面左侧选择 “API 密钥” 选项 (或点击链接 SiliconCloud。进入 API 密钥管理页面,点击 “新建 API 密钥” 按钮 。系统会弹出确认对话框,填写密钥描述,确认创建后,系统将生成一个唯一的 API 密钥 。复制这个密钥,将其粘贴到一个安全的文本文件中保存,这是后续配置的重要凭证 。

3.下载安装 CherryStudio

访问 Cherry-Studio 官方网站Cherry Studio - 全能的AI助手,在网站首页找到 “下载客户端” 按钮。下载过程可能有点慢,完成后,找到安装包文件并双击运行,在安装向导中,按照提示逐步完成安装过程 。在 Windows 系统下,可能需要点击 “下一步”、选择安装路径、接受许可协议等步骤 。

三、搭建个人知识库详细步骤

1.配置 API 密钥

安装完成后,打开 Cherry Studio 应用程序,在应用程序界面的左下角找到并点击 “设置” 图标,进入设置页面 。在设置页面中,找到 “模型服务” 选项卡,点击展开 。在模型服务列表中找到 “硅基流动”,将之前复制的 API 密钥粘贴到相应位置,点击保存 。

2.添加DeepSeek模型

Cherry Studio “硅基流动” 的设置中,点击 “管理”按钮,在弹出的窗口中,选择全部Tab,然后搜索 “DeepSeek-V3” 671B(或其他你需要的 DeepSeek 模型),找到后点击 “+” 。添加完成后,点击右边的 “检查” 按钮,若显示 “✔连接成功”,则表示配置成功 。

3.添加“BAAI/bge-m3嵌入模型”

Cherry Studio “硅基流动” 的设置中,点击 “管理”按钮,在弹出的窗口中,选择嵌入Tab,然后搜索 “BAAI/bge-m3”,找到后点击 “+”

BAAI/bge-m3 模型是一个能帮你更智能地检索和理解你知识库中内容的工具。将您的知识库中的文本转换为高质量的向量表示,它的作用有点像是给你的知识库“加了一双慧眼”,让它能更准确地找到你需要的信息。

4.验证测试

点击 Cherry Studio 左侧菜单栏的 “对话” 按钮,在输入框内输入文字,即可开始与 DeepSeek 模型进行对话 。此时,你可以选择顶部菜单中的模型名字,确保选择的是刚刚添加的 DeepSeek 模型,测试是否能够正常交互 。

安装过程
安装过程
获取模型id
获取模型id

通过以上步骤,你就可以在 Cherry Studio 中通过硅基流动轻松配置 DeepSeek,享受高效、稳定的 AI 服务了 。

5.配置个人专属知识库

我觉得这个知识库的好处除了可以让大模型回答问题,还有就是通过‘‘搜索知识库’’的功能,可以让你基于文档中的内容来进行搜索。现在好多工具,比如everything,也就只能根据文件的名称搜索。

  1. 打开知识库界面
  2. 左侧菜单栏中选择“知识库”选项。
  3. 添加知识库
  4. 在知识库界面,点击左上角的“添加”按钮。
  5. 在弹出的窗口中,填写以下信息:
  6. 名称:输入知识库的名称。
  7. 嵌入模型:选择或输入嵌入模型。
  8. 点击“确定”按钮完成添加。
  9. 添加文件
  10. 在知识库界面,点击“文件”选项卡。
  11. 点击右上角的“添加文件”按钮。
  12. 在弹出的窗口中,选择要添加的文件(支持pdf、docx、pptx、xlsx、txt、md格式)。
  13. 点击“确定”按钮完成文件上传。
  14. 查看文件内容
  15. 在文件选项卡中,点击已上传的文件(例如:测试知识库.txt)。
  16. 在弹出的窗口中,可以查看文件的详细内容。
  17. 测试文件
  18. 在知识库界面,点击“搜索知识库”选项卡。
  19. 在搜索框中输入要搜索的内容(例如:CausalLM)。
  20. 点击搜索按钮进行搜索。

上面步骤,由月之暗面出品的AI-KIMI视觉版根据图片总结。真的不要太方便了!!!

上图片教程

个人知识库安装过程
个人知识库安装过程

如果有疑问,也可以去官网找找 项目简介 | CherryStudio

四、疑惑解答

1.数据隐私

这套构建知识库的方案,其缺陷仍在于数据隐私方面的问题,毕竟是调用大模型的 API 来回答问题。倘若真的对此特别介意,那么只能选择本地搭建。就本地搭建而言,我这边也尝试了 deepseek r1 的蒸馏版,7b、8b、14b ,效果着实不佳,速度极为缓慢,毕竟个人电脑的配置也就那样了。有 Q 的可以尝试一下。

2.成本问题

还能接受吧~

当下官方正在开展活动,注册时输入我的邀请码 lCIBYejZ,或直接点击链接硅基流动统一登录,便能获取 2000 万 Tokens 。

对话消耗的token
deepseek-ai/DeepSeek-V3 费用
deepseek-ai/DeepSeek-V3 费用
Kimi计算费用
Kimi计算费用

​​​​​​​3.联网能力

目前deepseek的还不支持

发现有一个可以,大家可以尝试:

4.搭建知识库的其他方案

我自己尝试了ollama+anythingllm,ollama+chatbox,给我的感受还是目前这种方案好用。

anythingllm可以添加知识库,chatbox好像只能在对话框添加。

anythingllm chatbox 我都是使用的本地模型。
anythingllm回答的慢,chatbox回答的快。

跟电脑配置有关系,我的配置:

Windows 11 专业工作站版 64-bit

Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz (12 CPUs), ~2.6GHz

内存16G

NVIDIA GeForce RTX 2060 6G

5.知识库预料

在导入数据之前,需要对数据进行一些简单的预处理。对于文本文件,如果存在乱码问题,需要先进行编码转换,确保文本内容能够正确识别。例如,使用文本编辑工具将文件编码从 GBK 转换为 UTF-8。对于办公文档和 PDF 文件,若文件中包含大量无关的图片、图表或空白页,可根据实际情况进行适当的删减,以减少数据量,提高后续处理和检索的效率 。同时,对于较长的文档,可以进行适当的分段处理,以便更好地提取文本特征和进行向量表示。

好了今天的分享就到这里了,如果对你有帮助,希望大家点点赞,多互动,有问题的也可以关注我私信我。

### 使用 DeepSeek 进行材料流动性模拟的方法 DeepSeek 是一种功能强大的人工智能工具,能够应用于多种领域,包括科学研究和工程分析。尽管其主要优势在于自然语言处理和文献管理[^2],但在特定条件下也可以扩展至科学计算和仿真任务。 #### 工具准备 为了实现材料流动性的模拟,可以考虑以下方法组合: 1. **结合分子动力学软件** 将 DeepSeek 的能力其他专门用于流体或固体仿真的软件相结合,例如 LAMMPS 或 COMSOL Multiphysics。这些工具可以通过参数化输入文件的方式 DeepSeek 配合使用。 2. **数据预处理建模** 利用 DeepSeek 对实验数据进行整理、分类以及初步建模。这一步骤可以帮助研究人员快速提取关键变量并构建初始假设模型[^1]。 #### 技术流程说明 以下是具体的技术实施路径: ##### 数据收集阶段 - 收集关于材料物理特性和行为模式的相关资料(如密度函数理论 DFT 计算结果)。如果存在大量文献,则可利用 DeepSeek 自动摘要生成功能来加速这一过程。 ##### 参数设定阶段 - 定义边界条件:温度范围、压力水平以及其他环境因素; - 明确目标区域内的几何形状描述; ##### 模拟执行阶段 ```python import deepseek as ds from lammps import IPyLammps # 假设我们正在集成 LAMMPS # 初始化 DeepSeek 实例 model = ds.Model() # 加载训练好的神经网络权重或其他先验知识库 model.load_weights('silicon_flow_model.h5') # 创建 LAMMPS 接口对象 lmp = IPyLammps() # 设置本属性 lmp.command("units metal") lmp.command("dimension 3") # 调整时间步长等数值配置项... for step in range(total_steps): current_state = lmp.extract_atom("x", number_of_atoms, dimension=3) prediction = model.predict(current_state) update_lattice_structure(prediction) # 更新晶格结构 save_checkpoint(step) # 存储中间状态以便后续恢复运行 ``` 上述代码片段展示了如何通过 Python API 来调用外部程序并内部机器学习组件交互。注意这里仅提供了一个简化版框架示意,实际应用中还需要针对具体情况做进一步调整优化。 --- #### 注意事项 由于目前 DeepSeek 平台可能存在性能瓶颈问题,在大规模并发请求情况下容易出现延迟或者错误响应现象。因此建议合理规划作业规模,并预留充足的时间窗口应对潜在技术障碍。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

'零'Bug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值