5分钟教你搭建本地私有个人知识库 硅基流动+deepSeek+CherryStudio

5分钟教你搭建本地私有个人知识库 硅基流动+deepSeek+CherryStudio

在信息爆炸的时代,如何高效管理个人知识资产?借助 硅基流动(SiliconFlow) 的满血版 DeepSeek-R1 大模型与 Cherry Studio 客户端,只需5分钟即可搭建一个安全、智能的本地私有知识库。无论你是学生、职场人还是技术爱好者,都能轻松实现文档集中管理、精准检索与AI辅助生成。以下是详细教程:

一、准备工作:工具与环境

注册硅基流动账号
  • 访问 SiliconFlow官网 https://cloud.siliconflow.cn/i/FrfQv8wY,输入手机号注册并登录,新用户可免费获得 2000万Token额度 邀请码:FrfQv8wY。
    首页模型广场有大量模型可供选择,可以根据需要选择。
    在这里插入图片描述

  • 在控制台生成 API密钥(路径:左侧菜单栏 → API密钥 → 新建并复制密钥)。
    在这里插入图片描述

下载安装Cherry Studio

前往 Cherry Studio官网 https://cherry-ai.com/ 下载对应操作系统的安装包(Windows/macOS),建议安装到非系统盘(如D盘)以节省资源。
在这里插入图片描述

嵌入模型准备

推荐使用 BAAI/bge-m3 向量模型,支持多语言、多粒度语义检索,硅基流动中有可以参照接下来的内容。

二、配置模型与知识库 (耗时3分钟)

配置API与模型服务

  • 打开Cherry Studio,进入 设置 → 模型服务 → 硅基流动,粘贴复制的API密钥并验证连接。
    -在这里插入图片描述

  • 添加模型:在 模型管理 中搜索并添加 DeepSeek-R1(对话模型)和 BAAI/bge-m3(嵌入模型)
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

创建知识库

点击左侧 知识库 → 添加,输入知识库名称(如“test”),选择嵌入模型 BAAI/bge-m3。
在这里插入图片描述

上传文档并向量化

支持上传 PDF、Word、TXT、网页链接 等格式。拖拽文件至知识库界面,等待右侧出现绿色对勾即表示向量化完成。

注意:若文档含复杂表格或扫描件,需先用工具(如Doc2x)转换为结构化文本以提高解析精度。

此处上传了一个虚构的名著价格知识库。
在这里插入图片描述
部分文本如下,可以自行使用以下文本创建文档并上传构建知识库测试:

书名                         | 价格(元)
----------------------------------------
傲慢与偏见                   | 25.99
简爱                         | 30.50
呼啸山庄                     | 28.75
战争与和平                   | 45.90
安娜·卡列尼娜               | 38.70
复活                         | 29.90
百年孤独                     | 32.00
追风筝的人                   | 36.50
小王子                       | 22.00
了不起的盖茨比               | 27.50
麦田里的守望者               | 26.00
罪与罚                       | 40.00
老人与海                     | 20.00
哈姆雷特                     | 24.50
罗密欧与朱丽叶               | 23.00
唐吉诃德                     | 35.00
雾都孤儿                     | 29.00
查令十字街84| 21.50| 33.00
杀死一只知更鸟               | 28.00
红与黑                       | 31.00
包法利夫人                   | 34.00

三、使用与验证(耗时2分钟)

绑定知识库与模型

进入 聊天助手,选择 DeepSeek-R1 作为对话模型,点击下方 知识库图标 并勾选已创建的知识库(图标变蓝表示启用)。
在这里插入图片描述
在这里插入图片描述

提问与检索测试

输入问题(如“介绍一下战争与和平,并给出价格”),模型会基于知识库内容生成回答,并标注引用来源。例如:

“《战争与和平》是俄国作家列夫·托尔斯泰的长篇小说,以拿破仑入侵俄国为历史背景,通过描绘彼埃尔、安德烈、娜塔莎等贵族人物的命运变迁,探讨战争、历史、自由意志与个体价值等深刻主题,被誉为世界文学中的史诗巨著 1。

根据参考资料,该书的定价为 45.90 元” (定价与给出的文档内容是相同。)

在这里插入图片描述

高级功能

  • 动态优化:在知识库设置中调整分段大小、重叠参数,提升检索效果。
    在这里插入图片描述
    在这里插入图片描述

  • 多模态支持:未来可扩展图像、视频等多格式数据(需升级嵌入模型)。

四、本地部署(可选)

若对数据隐私要求极高或具备充足算力(如RTX 4090显卡),可尝试本地部署:

  1. 下载 Ollama(开源LLM管理工具),运行命令 ollama pull deepseek-r1 拉取模型, ollama pull bge-m3 拉取嵌入模型。(可参考 3分钟教你搭建属于自己的本地大模型 https://blog.csdn.net/qq_36944952/article/details/145516235)

  2. 在Cherry Studio中切换至 Ollama服务,选择本地模型即可离线使用。
    注意:满血版DeepSeek-R1(671B参数)需极高硬件配置,建议普通用户优先使用云端API。

五、方案优势与场景

  • 隐私安全:数据全程本地处理,避免敏感信息外流。

  • 高效检索:结合语义搜索与向量技术,秒级定位目标内容。

  • 低成本:硅基流动免费额度+开源工具,搭建成本近乎为零48。

适用场景:
  • 学生:整理课堂笔记、论文资料,快速生成复习提纲。

  • 职场人:管理项目文档、会议纪要,一键生成汇报PPT。

  • 开发者:构建代码库,通过AI辅助编写脚本。

总结

通过硅基流动的 DeepSeek-R1 与 Cherry Studio,即使是技术小白也能快速搭建私有知识库。该方案不仅兼顾性能与隐私,更展现了国产大模型的技术实力。立即行动,让你的知识管理迈入智能时代!

福利:微信搜索公众号 “山风的Note”,关注回复“deepseek pdf”免费获取《万字DeepSeek使用指南》

### DeepSeek流动的技术原理 DeepSeek作为一种先进的搜索算法框架,旨在通过深度学习模型优化信息检索过程。该框架利用神经网络的强大能力来理解和处理复杂的查询请求[^1]。 #### 流动的概念解析 流动指的是于半导体材料(主要是)构建的信息流传输机制,在现代计算架构中扮演着至关重要的角色。这种技术允许数据以极高的速度在芯片内部以及不同组件之间传递,从而极大地提高了系统的整体性能和效率[^2]。 #### 技术实现细节 对于DeepSeek而言,其核心技术在于如何有效地训练大规模预训练语言模型来进行精准匹配。这涉及到自然语言处理领域内的多项前沿研究,比如BERT、RoBERTa等模型的应用和发展。这些模型能够理解上下文语义并从中提取有用特征用于后续的任务执行[^3]。 而关于流动,则更多依赖于物理层面的设计创新。例如采用三维堆叠结构可以减少信号延迟;异构集成方案则有助于整合多种功能模块于一体,进一步提升运算效能的同时降低成本开销[^4]。 ```python import torch from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') def encode_query(query_text): inputs = tokenizer(query_text, return_tensors="pt") outputs = model(**inputs) embeddings = outputs.last_hidden_state.mean(dim=1).squeeze() return embeddings.detach().numpy() query_embedding = encode_query("example query here") print(f"Query Embedding Shape: {query_embedding.shape}") ``` 此代码片段展示了使用预训练好的BERT模型对输入文本进行编码的过程,这是DeepSeek系统中的一个重要组成部分之一[^5]。 ### 应用场景分析 在实际应用方面,DeepSeek非常适合应用于需要高效准确获取特定信息的场合,如学术文献查找、企业级知识库管理等领域。而对于流动来说,随着摩尔定律逐渐接近极限,这项技术成为延续集成电路发展趋势的关键所在,广泛存在于高性能计算机服务器集群之中,支持大数据量快速交换需求[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山风wind

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值