马尔可夫链-维基百科

 http://zh.wikipedia.org/wiki/%E9%A9%AC%E5%B0%94%E5%8F%AF%E5%A4%AB%E9%93%BE

 

       马尔可夫链,因安德烈·马尔可夫得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,只有当前的状态用来预测将来, 过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。

 

马尔可夫链是随机变量X1,X2,X3...的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则

 P(X_{n+1}=x|X_0, X_1, X_2, /ldots, X_n) = P(X_{n+1}=x|X_n). /,

这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质

 

性质

马尔可夫链是由一个条件分布来表示的

 P(X_{n+1}| X_n)/,

这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

 P(X_{n+2}|X_n) = /int P(X_{n+2},X_{n+1}|X_n)/,dX_{n+1} 
 = /int P(X_{n+2}|X_{n+1}) /, P(X_{n+1}|X_n) /, dX_{n+1}

同样,

 P(X_{n+3}|X_n) = /int P(X_{n+3}|X_{n+2}) /int P(X_{n+2}|X_{n+1}) /, P(X_{n+1}|X_n) /, dX_{n+1} /, dX_{n+2}

这些式子可以通过乘以转移概率并求k − 1积分来一般化到任意的将来时间n + k

 

边际分布 P(Xn)是在时间为n时的状态的分布。初始分布为P(X0)。该过程的变化可以用以下的一个时间步幅来描述:

 P(X_{n+1}) = /int P(X_{n+1}|X_n)/,P(X_n)/,dX_n

这是Frobenius-Perron equation的一个版本。这时可能存在一个或多个状态分布π满足

 /pi(X) = /int P(X|Y)/,/pi(Y)/,dY

其中Y只是为了便于对变量积分的一个名义。这样的分布π被称作是“平稳分布”(Stationary Distribution)或者“稳态分布”(Steady-state Distribution)。一个平稳分布是一个对应于特征根为1的条件分布函数的特征方程

平稳分布是否存在,以及如果存在是否唯一,这是由过程的特定性质决定的。“不可约”是指每一个状态都可来自任意的其它状态。当存在至少一个状态经过一个固定的时间段后连续返回,则这个过程被称为是“周期的”。

 

 

离散状态空间中的马尔可夫链

如果状态空间是有限的,则转移概率分布可以表示为一个具有(i,j)元素的矩阵,称之为“转移矩阵”:

P_{ij} = P(X_{n+1}=i/mid X_n=j) /,

对于一个离散状态空间,k步转移概率的积分即为求和,可以对转移矩阵求k次幂来求得。就是说,如果/mathbf{P}是一步转移矩阵,/mathbf{P}^k就是k步转移后的转移矩阵。

平稳分布是一个满足以下方程的向量

 /mathbf{P}/pi^* = /pi^*.

在此情况下,稳态分布π * 是一个对应于特征根为1的、该转移矩阵的特征向量。

如果转移矩阵/mathbf{P}不可约,并且是非周期的,则/mathbf{P}^k收敛到一个每一列都是不同的平稳分布 π * ,并且,

/lim_{k/rightarrow/infty}/mathbf{P}^k/pi=/pi^*,

独立于初始分布π。这是由Perron-Frobenius theorem所指出的。

正的转移矩阵(即矩阵的每一个元素都是正的)是不可约和非周期的。矩阵被称为是一个随机矩阵,当且仅当这是某个马尔可夫链中转移概率的矩阵。

注意:在上面的定式化中,元素(i,j)是由j转移到i的概率。有时候一个由元素(i,j)给出的等价的定式化等于由i转移到j的概率。在此情况下,转移矩阵仅是这里所给出的转移矩阵的转置。另外,一个系统的平稳分布是由该转移矩阵的左特征向量给出的,而不是右特征向量。

转移概率独立于过去的特殊况为熟知的Bernoulli scheme。仅有两个可能状态的Bernoulli scheme被熟知为贝努利过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值