给出一个m 求最少由几个 3*n*(n-1)+1的数组成
3*n*(n-1)+1 == 6*(n*(n-1)/2)+1
定理:
至多三个三角形数( n*(n-1)/2 ) 可以构成任意自然数
对于一个数m 假设由k个题目所述的数组成
即6*t1*(t1-1)/2+1 +6*t2*(t2-1)/2+1 +......6*tk*(tk-1)/2+1 提取下6
==6*( t1*(t1-1)/2 + t2*(t2-1)/2+ ..... tk*(tk-1)/2 ) +k
所以对于m%6 可以知道 k的值
需要判断k=1 ,2 的情况
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <cmath>
using namespace std;
#include <queue>
#include <stack>
#include <vector>
#include <deque>
#include <set>
#include <map>
#define clc(arr, val) memset(arr, val, sizeof(arr))
#define FOR(i,a,b) for(int i=a;i<=b;i++)
#define IN freopen ("in.txt" , "r" , stdin);
#define OUT freopen ("out.txt" , "w" , stdout);
typedef long long LL;
typedef unsigned long long ULL;
const int MAXN = 60127;
const int MAXM = 311231;
const int N = 60127;
const int M = 200000;
const int INF = 0x3f3f3f3f;
const LL mod = (LL)1<<32;
const double eps= 1e-8;
const double pi=acos(-1.0);
#define lson l,m, rt<<1
#define rson m+1,r,rt<<1|1
int num[123456];
int main()
{
int p=1;
for(;;p++)
{
num[p]=3*p*(p-1)+1;
if(num[p]>1e9) break;
}
int t,n;
cin>>t;
while(t--)
{
cin>>n;
if(n%6==3)
{
puts("3");
}
else if(n%6==4)
{
puts("4");
}
else if(n%6==5)
{
puts("5");
}
else if(n%6==2)
{
int flag=0;
for(int i=0;i<p;i++)
{
if(num[i]<n)
{
int x=lower_bound(num,num+p,n-num[i])-num;
if(num[x]==n-num[i])
{
flag=1;
break;
}
}
}
if(flag) puts("2");
else puts("8");
}
else if(n%6==1)
{
int x=lower_bound(num,num+p,n)-num;
if(num[x]==n)
puts("1");
else puts("7");
}
else if(n%6==0)
{
puts("6");
}
}
return 0;
}