ncnn源码分析-001-blob

本文深入探讨了NCNN框架中Blob数据结构的作用与实现。Blob作为基本数据单元,连接了网络中的各层,负责传递计算过程中的数据。文章详细介绍了Blob的属性,包括名称、生产者和消费者,并解释了真正的数据存储位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ncnn也使用了类似caffe中的blob作为最基本的数据结构来存储计算过程中的各种数据。

1.blob结构体
class Blob
{
public:
    std::string name;
    int producer; // 指明该blob是哪个层的输出,同时说明,一个blob只能由一个层输出
    std::vector<int> consumers; // 指明该blob哪个层的输入,一个可以同时输入多个层

}

  由blob类结构可以看出blob类本身不存放具体的计算数据,只负责关联blob和相应层(该blob是哪个层的输出,哪个层的输入) 真正的blob数据存放在blob_mats里,索引与blob一致,而blob_mats存放在net.h中的Extractor结构体中。

realesrgan-ncnn-vulkan-20211212-windows是一个基于ncnn框架和Vulkan图形API开发的图像超分辨率增强模型。它是由GitHub用户realsrgan开发的最新版本,最新发布日期为2021年12月12日,专为Windows操作系统而设计。 该模型的主要应用是图像超分辨率增强,通过提高图像的分辨率和细节,使图像看起来更加清晰和真实。它采用深度学习和卷积神经网络等先进的技术,能够将低分辨率的图像转换成高分辨率的图像,从而提升图像的质量和视觉效果。 realesrgan-ncnn-vulkan-20211212-windows的开发使用了ncnn框架和Vulkan图形API,这使得它能够在Windows系统上实现快速且高效的图像处理。ncnn是一个轻量级的深度学习框架,专注于在移动平台和嵌入式设备上实现高性能和低延迟的推理。而Vulkan图形API是一种跨平台的图形渲染和计算API,可以充分利用计算设备的性能,提供高效的图像处理和渲染能力。 realesrgan-ncnn-vulkan-20211212-windows的使用可以通过命令行或者图形界面进行,用户可以根据自己的需求和偏好选择适合的方式。该模型提供了训练好的权重参数,用户可以直接加载这些参数并进行图像超分辨率增强。此外,该模型还支持批量处理和视频处理,方便用户对多个图像进行处理。 总之,realesrgan-ncnn-vulkan-20211212-windows是一个高效、快速且易于使用的图像超分辨率增强模型,适用于Windows系统,并利用了ncnn框架和Vulkan图形API的优势,为用户提供了出色的图像处理效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值