车
Time Limit:1000MS Memory Limit:65536K
Total Submit:151 Accepted:58
Description
在n*n(n≤20)的方格棋盘上放置n个车(可以攻击所在行、列),有些格子不能放,求使它们不能互相攻击的方案总数。
Input
第一行为棋盘的大小n
第二行为障碍的数量m
第三行到第m+3为m个障碍
Output
总数
Sample Input
4
2
1 1
2 2
Sample Output
14
思路
状压DP:一行一行放置,1表示放旗子,0表示不放(或不能放)便得到一个二进制数表示这行的状态。
若当前状态
s
s
s为10110,则第1、3、4列已经放置,用十进制数22来表示。
因为一行只能放一个旗子,所以状态
s
s
s表示当前放到第三行,那么s一定来自:
① 前两行在第3、4列放置了棋子(不考虑顺序,下同),第三行在第1列放置;
② 前两行在第1、4列放置了棋子,第三行在第3列放置;
③ 前两行在第1、3列放置了棋子,第三行在第4列放置。
可得:
f
10110
=
f
00110
+
f
10010
+
f
10100
f_{10110}=f_{00110}+f_{10010}+f_{10100}
f10110=f00110+f10010+f10100
可推出:
f
0
=
1
,
f
s
=
∑
f
s
−
2
i
f_0=1,f_s=\sum{f_{s-2^i}}
f0=1,fs=∑fs−2i,其中
s
i
+
1
s_{i+1}
si+1为1
所以只要枚举状态s,再枚举s里的1就行了。
但还要考虑障碍,及不能放的情况:
用
a
r
a_r
ar表示第r行不允许放置的情况,然后对于需要处理的状态
s
,
s
&
=
a
r
s,s\&=a_r
s,s&=ar,保证了不允许放置的位为0
代码
#include<stdio.h>
#include<iostream>
#include<cstring>
using namespace std;
long long n,m,mn,a[21],x,y,f[524289];
int main()
{
cin>>n>>m;
mn=(2<<n-1)-1;
for(int i=1; i<=m; i++)
{
cin>>x>>y;
a[x]+=(1<<y-1);
}
f[0]=1;
for(int i=1,c,t; i<=mn; i++)
{
for(t=i,c=0;t;t-=t&-t,c++);
for(t=i&~a[c];t;t-=t&-t)
f[i]+=f[i^(t&-t)];
}
cout<<f[mn];
}